These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31096634)

  • 1. EEMIP: Energy-Efficient Communication Using Timing Channels and Prioritization in ZigBee.
    Gočal P; Macko D
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31096634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the Battery Life of the ZigBee Routers and Coordinator by Modifying Their Mode of Operation.
    Marrero D; Suárez A; Macías E; Mena V
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultra-low power wireless sensor network for bicycle torque performance measurements.
    Gharghan SK; Nordin R; Ismail M
    Sensors (Basel); 2015 May; 15(5):11741-68. PubMed ID: 26007728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
    Ait Aoudia F; Gautier M; Magno M; Berder O; Benini L
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes.
    Vaquerizo-Hdez D; Muñoz P; R-Moreno MD; F Barrero D
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28937660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT.
    Piyare R; Murphy AL; Magno M; Benini L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Secure Communication in Zigbee Network Using the DNA Sequence Encryption Technique.
    Padma B; Babu ES
    Life (Basel); 2023 May; 13(5):. PubMed ID: 37240792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-Multilevel Super-Orthogonal Space-Time Coding Scheme for Reliable ZigBee-Based IoMT Communications.
    Ma SC; Alkhaleefah M; Chang YL; Chuah JH; Chang WY; Ku CS; Wu MC; Chang L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of ZigBee-Based WBAN and WiFi for Health Telemonitoring Systems.
    Kim Y; Lee S; Lee S
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):222-30. PubMed ID: 25576586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
    Wu F; Rüdiger C; Yuce MR
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Randomness Detection Method of ZigBee Protocol in a Wireless Sensor Network.
    Tang Y; Lian H; Li L; Wang X; Yan X
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E-HIP: An Energy-Efficient OpenHIP-Based Security in Internet of Things Networks.
    Kaňuch P; Macko D
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Scheme for an Energy Efficient Internet of Things Based on Wireless Sensor Networks.
    Rani S; Talwar R; Malhotra J; Ahmed SH; Sarkar M; Song H
    Sensors (Basel); 2015 Nov; 15(11):28603-27. PubMed ID: 26569260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication protocols evaluation for a wireless rainfall monitoring network in an urban area.
    Ortega-Gonzalez L; Acosta-Coll M; Piñeres-Espitia G; Aziz Butt S
    Heliyon; 2021 Jun; 7(6):e07353. PubMed ID: 34195448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RF Energy Harvesting and Information Transmission Based on NOMA for Wireless Powered IoT Relay Systems.
    Rauniyar A; Engelstad P; Østerbø ON
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30262773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
    Osorio de la Rosa E; Vázquez Castillo J; Carmona Campos M; Barbosa Pool GR; Becerra Nuñez G; Castillo Atoche A; Ortegón Aguilar J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Maximizing the Throughput of Packet Transmission under Energy Constraints.
    Wu W; Dai G; Li Y; Shan F
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29937500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks.
    Zou T; Lin S; Feng Q; Chen Y
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26742042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Implementation and Practical Evaluation of an IoT Home Automation System for Fog Computing Applications Based on MQTT and ZigBee-WiFi Sensor Nodes.
    Froiz-Míguez I; Fernández-Caramés TM; Fraga-Lamas P; Castedo L
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30104529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
    Lee D
    Sensors (Basel); 2008 Dec; 8(12):7690-7714. PubMed ID: 27873953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.