BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31096657)

  • 1. Computational Studies on Water-Catalyzed Mechanisms for Stereoinversion of Glutarimide Intermediates Formed from Glutamic Acid Residues in Aqueous Phase.
    Nakayoshi T; Fukuyoshi S; Kato K; Kurimoto E; Oda A
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational studies on the water-catalyzed stereoinversion mechanism of glutamic acid residues in peptides and proteins.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Chirality; 2018 May; 30(5):527-535. PubMed ID: 29528512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Mechanisms of Succinimide Formation from Aspartic Acid Residues Catalyzed by Two Water Molecules in the Aqueous Phase.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism.
    Kirikoshi R; Manabe N; Takahashi O
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies on nonenzymatic succinimide-formation mechanisms of the aspartic acid residues catalyzed by two water molecules.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi H; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140459. PubMed ID: 32474105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of the enolization in a direct mechanism of racemization of the aspartic acid residue.
    Takahashi O; Kobayashi K; Oda A
    Chem Biodivers; 2010 Jun; 7(6):1630-3. PubMed ID: 20564675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27735868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):759-766. PubMed ID: 29305913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the enolization of succinimide derivatives, a key step of racemization of aspartic acid residues: importance of a two-H2O mechanism.
    Takahashi O; Kobayashi K; Oda A
    Chem Biodivers; 2010 Jun; 7(6):1349-56. PubMed ID: 20564551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of rate constants for β-linkage isomerization of three specific aspartyl residues in recombinant human αA-crystallin protein by reversed-phase HPLC.
    Sadakane Y; Fujii N; Nakagomi K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3240-6. PubMed ID: 21470922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Reaction Mechanisms for the Threonine-Residue Stereoinversion Catalyzed by a Dihydrogen Phosphate Ion.
    Nakayoshi T; Kato K; Kurimoto E; Takano Y; Oda A
    ACS Omega; 2022 Jun; 7(22):18306-18314. PubMed ID: 35694452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of conformations of peptides on stereoinversions and/or isomerizations of aspartic acid residues.
    Oda A; Nakayoshi T; Fukuyoshi S; Kurimoto E; Takahashi O
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):783-788. PubMed ID: 29331333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on isomerization and peptide bond cleavage at aspartic residue.
    Sang-aroon W; Ruangpornvisuti V
    J Mol Model; 2013 Sep; 19(9):3627-36. PubMed ID: 23754169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of intramolecular and intermolecular hydrogen bonding in a three-water-assisted mechanism of succinimide formation from aspartic acid residues.
    Takahashi O; Kirikoshi R; Manabe N
    Molecules; 2014 Aug; 19(8):11440-52. PubMed ID: 25093984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous stereoinversion and isomerization at specific aspartic acid residues in alpha A-crystallin from human lens.
    Fujii N; Satoh K; Harada K; Ishibashi Y
    J Biochem; 1994 Sep; 116(3):663-9. PubMed ID: 7852288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the conformations of αA-crystallin peptides on the isomerization rates of aspartic acid residues.
    Nakayoshi T; Kato K; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140480. PubMed ID: 32599296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.
    Aki K; Okamura E
    J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of isomerization and inversion of aspartate 58 of αA-crystallin peptide mimics under physiological conditions.
    Aki K; Fujii N; Fujii N
    PLoS One; 2013; 8(3):e58515. PubMed ID: 23505525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.