These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31096669)

  • 41. pH-responsive drug-delivery systems.
    Zhu YJ; Chen F
    Chem Asian J; 2015 Feb; 10(2):284-305. PubMed ID: 25303435
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein release from biodegradable dextran nanogels.
    Van Thienen TG; Raemdonck K; Demeester J; De Smedt SC
    Langmuir; 2007 Sep; 23(19):9794-801. PubMed ID: 17696367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery.
    Chen W; Hou Y; Tu Z; Gao L; Haag R
    J Control Release; 2017 Aug; 259():160-167. PubMed ID: 27810557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Redox-responsive smart nanogels for intracellular targeting of therapeutic agents: applications and recent advances.
    Ghorbani M; Hamishehkar H
    J Drug Target; 2019 Apr; 27(4):408-422. PubMed ID: 30124074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanocarrier-Integrated Microspheres: Nanogel Tectonic Engineering for Advanced Drug-Delivery Systems.
    Tahara Y; Mukai SA; Sawada S; Sasaki Y; Akiyoshi K
    Adv Mater; 2015 Sep; 27(34):5080-8. PubMed ID: 26198172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanogels for regenerative medicine.
    Grimaudo MA; Concheiro A; Alvarez-Lorenzo C
    J Control Release; 2019 Nov; 313():148-160. PubMed ID: 31629040
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biodegradable nanogels prepared by self-assembly of poly(L-lactide)-grafted dextran: entrapment and release of proteins.
    Nagahama K; Ouchi T; Ohya Y
    Macromol Biosci; 2008 Nov; 8(11):1044-52. PubMed ID: 18814318
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of dual-sensitive nanogels based on chitosan and N-isopropylacrylamide and its intelligent drug delivery of 10-hydroxycamptothecine.
    Wang Y; Wang J; Xu H; Ge L; Zhu J
    Drug Deliv; 2015; 22(6):803-13. PubMed ID: 24512347
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-Functional Nanogels as Theranostic Platforms: Exploiting Reversible and Nonreversible Linkages for Targeting, Imaging, and Drug Delivery.
    Chambre L; Degirmenci A; Sanyal R; Sanyal A
    Bioconjug Chem; 2018 Jun; 29(6):1885-1896. PubMed ID: 29727179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis and characterization of a pH/temperature-dual responsive hydrogel with promising biocompatibility features for stimuli-responsive 5-FU delivery.
    Suryavanshi P; Mahajan S; Banerjee SK; Seth K; Banerjee S
    J Mater Chem B; 2024 May; 12(21):5098-5110. PubMed ID: 38700289
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin.
    Kumar P; Behl G; Sikka M; Chhikara A; Chopra M
    J Biomater Sci Polym Ed; 2016 Oct; 27(14):1413-33. PubMed ID: 27383582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multifunctional DNA Nanogels for Aptamer-Based Targeted Delivery and Stimuli-Triggered Release of Cancer Therapeutics.
    Lee K; Kim T; Kim YM; Yang K; Choi I; Roh YH
    Macromol Rapid Commun; 2021 Jan; 42(2):e2000457. PubMed ID: 33230833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oligonucleotide based nanogels for cancer therapeutics.
    Hatami H; Rahiman N; Mohammadi M
    Int J Biol Macromol; 2024 May; 267(Pt 2):131401. PubMed ID: 38582467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimuli-responsive nanogel composites and their application in nanomedicine.
    Molina M; Asadian-Birjand M; Balach J; Bergueiro J; Miceli E; Calderón M
    Chem Soc Rev; 2015 Oct; 44(17):6161-86. PubMed ID: 26505057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a thermally responsive nanogel based on chitosan-poly(N-isopropylacrylamide-co-acrylamide) for paclitaxel delivery.
    Wang Y; Xu H; Wang J; Ge L; Zhu J
    J Pharm Sci; 2014 Jul; 103(7):2012-2021. PubMed ID: 24823900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polyethyleneimine modified biocompatible poly(N-isopropylacrylamide)-based nanogels for drug delivery.
    Quan CY; Wei H; Sun YX; Cheng SX; Shen K; Gu ZW; Zhang XZ; Zhuo RX
    J Nanosci Nanotechnol; 2008 May; 8(5):2377-84. PubMed ID: 18572652
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells.
    Abedi F; Davaran S; Hekmati M; Akbarzadeh A; Baradaran B; Moghaddam SV
    J Nanobiotechnology; 2021 Jan; 19(1):18. PubMed ID: 33422062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An insight of nanogels as novel drug delivery system with potential hybrid nanogel applications.
    Maddiboyina B; Desu PK; Vasam M; Challa VT; Surendra AV; Rao RS; Alagarsamy S; Jhawat V
    J Biomater Sci Polym Ed; 2022 Feb; 33(2):262-278. PubMed ID: 34547214
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery.
    Ji L; Zhang F; Zhu L; Jiang J
    Int J Biol Macromol; 2021 Feb; 170():459-468. PubMed ID: 33359254
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ligand-decorated nanogels: fast one-pot synthesis and cellular targeting.
    Ryu JH; Bickerton S; Zhuang J; Thayumanavan S
    Biomacromolecules; 2012 May; 13(5):1515-22. PubMed ID: 22455467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.