These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31096750)

  • 1. Analysis of the severity of occupational injuries in the mining industry using a Bayesian network.
    Mirzaei Aliabadi M; Aghaei H; Kalatpuor O; Soltanian AR; Nikravesh A
    Epidemiol Health; 2019; 41():e2019017. PubMed ID: 31096750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting Strategies to Reduce High-Risk Unsafe Work Behaviors Using the Safety Behavior Sampling Technique and Bayesian Network Analysis.
    Ghasemi F; Kalatpour O; Moghimbeigi A; Mohammadfam I
    J Res Health Sci; 2017 Mar; 17(1):e00372. PubMed ID: 28413170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of human and organizational factors that influence mining accidents based on Bayesian network.
    Mirzaei Aliabadi M; Aghaei H; Kalatpour O; Soltanian AR; Nikravesh A
    Int J Occup Saf Ergon; 2020 Dec; 26(4):670-677. PubMed ID: 29560801
    [No Abstract]   [Full Text] [Related]  

  • 4. Assessment of accident severity in the construction industry using the Bayesian theorem.
    Alizadeh SS; Mortazavi SB; Mehdi Sepehri M
    Int J Occup Saf Ergon; 2015; 21(4):551-7. PubMed ID: 26694008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical Bayesian Geographical Mapping of Occupational Accidents among Iranian Workers.
    Vahabi N; Kazemnejad A; Datta S
    Arch Iran Med; 2017 May; 20(5):302-307. PubMed ID: 28510466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying data mining techniques to explore factors contributing to occupational injuries in Taiwan's construction industry.
    Cheng CW; Leu SS; Cheng YM; Wu TC; Lin CC
    Accid Anal Prev; 2012 Sep; 48():214-22. PubMed ID: 22664684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key factors contributing to accident severity rate in construction industry in Iran: a regression modelling approach.
    Soltanzadeh A; Mohammadfam I; Moghimbeigi A; Ghiasvand R
    Arh Hig Rada Toksikol; 2016 Mar; 67(1):47-53. PubMed ID: 27092639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of non-fatal accidents in an opencast mine by logistic regression model - a case study.
    Onder S; Mutlu M
    Int J Inj Contr Saf Promot; 2017 Sep; 24(3):328-337. PubMed ID: 27166178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Work-related injuries and fatalities in the geotechnical site works.
    Akboğa Kale Ö; Eskisar T
    Ind Health; 2018 Oct; 56(5):394-406. PubMed ID: 29780078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between certain individual characteristics and occupational accidents.
    Jafari MJ; Barkhordari A; Eskandari D; Mehrabi Y
    Int J Occup Saf Ergon; 2019 Mar; 25(1):61-65. PubMed ID: 30019636
    [No Abstract]   [Full Text] [Related]  

  • 11. Occupational Safety and Health Measures in Micro-scale Enterprises (MSEs) in Shiraz, Iran.
    Jahangiri M; Rostamabadi A; Malekzadeh G; Sadi AF; Hamzavi G; Rasooli J; Momeni Z; Ghaem H
    J Occup Health; 2016 May; 58(2):201-8. PubMed ID: 27010083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of human and organizational deficiencies on workers' safety behavior at a mining site in Iran.
    Mirzaei Aliabadi M; Aghaei H; Kalatpour O; Soltanian AR; SeyedTabib M
    Epidemiol Health; 2018; 40():e2018019. PubMed ID: 29807409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling important factors on occupational accident severity factor in the construction industry using a combination of artificial neural network and genetic algorithm.
    Mohammadian F; Sadeghi M; Hanifi SM; Noorizadeh N; Abedi K; Fazli Z
    Work; 2022; 73(1):189-202. PubMed ID: 35871380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploratory analysis of Spanish energetic mining accidents.
    Sanmiquel L; Freijo M; Rossell JM
    Int J Occup Saf Ergon; 2012; 18(2):209-19. PubMed ID: 22721539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining psychosocial and physical hazards in the Ghanaian mining industry and their implications for employees' safety experience.
    Amponsah-Tawiah K; Jain A; Leka S; Hollis D; Cox T
    J Safety Res; 2013 Jun; 45():75-84. PubMed ID: 23708478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occupational accidents in mining workers: scoping review of studies published in the last 13 years.
    Cruz-Ausejo L; Cama-Ttito NA; Solano PF; Copez-Lonzoy A; Vera-Ponce VJ
    BMJ Open; 2024 Oct; 14(10):e080572. PubMed ID: 39395823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-miss narratives from the fire service: a Bayesian analysis.
    Taylor JA; Lacovara AV; Smith GS; Pandian R; Lehto M
    Accid Anal Prev; 2014 Jan; 62():119-29. PubMed ID: 24144497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model based on PDCA and data mining approach for the prevention of occupational accidents in the plumbing activity in the construction sector.
    Mosquera R; Pérez Vergara IG; Contreras-Pacheco OE
    Work; 2024; 78(2):399-410. PubMed ID: 38277324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting recurrent scenarios from narrative texts using a Bayesian network: application to serious occupational accidents with movement disturbance.
    Abdat F; Leclercq S; Cuny X; Tissot C
    Accid Anal Prev; 2014 Sep; 70():155-66. PubMed ID: 24769246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mine Safety and Health Administration's Part 50 program does not fully capture chronic disease and injury in the Illinois mining industry.
    Almberg KS; Friedman LS; Swedler D; Cohen RA
    Am J Ind Med; 2018 May; 61(5):436-443. PubMed ID: 29521422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.