These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 31096924)

  • 1. Are non-constant rates and non-proportional treatment effects accounted for in the design and analysis of randomised controlled trials? A review of current practice.
    Jachno K; Heritier S; Wolfe R
    BMC Med Res Methodol; 2019 May; 19(1):103. PubMed ID: 31096924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmenting the logrank test in the design of clinical trials in which non-proportional hazards of the treatment effect may be anticipated.
    Royston P; Parmar MK
    BMC Med Res Methodol; 2016 Feb; 16():16. PubMed ID: 26869168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation study comparing the power of nine tests of the treatment effect in randomized controlled trials with a time-to-event outcome.
    Royston P; B Parmar MK
    Trials; 2020 Apr; 21(1):315. PubMed ID: 32252820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect.
    Royston P; Parmar MK
    Trials; 2014 Aug; 15():314. PubMed ID: 25098243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of a non-constant baseline hazard on detection of time-dependent treatment effects: a simulation study.
    Jachno K; Heritier S; Wolfe R
    BMC Med Res Methodol; 2021 Aug; 21(1):177. PubMed ID: 34454428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined test versus logrank/Cox test in 50 randomised trials.
    Royston P; Choodari-Oskooei B; Parmar MKB; Rogers JK
    Trials; 2019 Mar; 20(1):172. PubMed ID: 30885277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical power comparison of statistical tests in contemporary phase III randomized controlled trials with time-to-event outcomes in oncology.
    Horiguchi M; Hassett MJ; Uno H
    Clin Trials; 2020 Dec; 17(6):597-606. PubMed ID: 32933339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of different population-level summary measures for randomised trials with time-to-event outcomes, with a focus on non-inferiority trials.
    Quartagno M; Morris TP; Gilbert DC; Langley RE; Nankivell MG; Parmar MK; White IR
    Clin Trials; 2023 Dec; 20(6):594-602. PubMed ID: 37337728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing the integrated difference of two survival functions to quantify the treatment contrast for designing, monitoring, and analyzing a comparative clinical study.
    Zhao L; Tian L; Uno H; Solomon SD; Pfeffer MA; Schindler JS; Wei LJ
    Clin Trials; 2012 Oct; 9(5):570-7. PubMed ID: 22914867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of non-inferiority randomized trials using the difference in restricted mean survival times.
    Weir IR; Trinquart L
    Clin Trials; 2018 Oct; 15(5):499-508. PubMed ID: 30074407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample size under the additive hazards model.
    McDaniel LS; Yu M; Chappell R
    Clin Trials; 2016 Apr; 13(2):188-98. PubMed ID: 26572562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of survival distributions in clinical trials: A practical guidance.
    Chen X; Wang X; Chen K; Zheng Y; Chappell RJ; Dey J
    Clin Trials; 2020 Oct; 17(5):507-521. PubMed ID: 32594788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deviation from the Proportional Hazards Assumption in Randomized Phase 3 Clinical Trials in Oncology: Prevalence, Associated Factors, and Implications.
    Rahman R; Fell G; Ventz S; Arfé A; Vanderbeek AM; Trippa L; Alexander BM
    Clin Cancer Res; 2019 Nov; 25(21):6339-6345. PubMed ID: 31345838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical review of oncology clinical trial design under non-proportional hazards.
    Ananthakrishnan R; Green S; Previtali A; Liu R; Li D; LaValley M
    Crit Rev Oncol Hematol; 2021 Jun; 162():103350. PubMed ID: 33989767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new modeling and inference approach for the Systolic Blood Pressure Intervention Trial outcomes.
    Yang S; Ambrosius WT; Fine LJ; Bress AP; Cushman WC; Raj DS; Rehman S; Tamariz L
    Clin Trials; 2018 Jun; 15(3):305-312. PubMed ID: 29671345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A clinical trial design using the concept of proportional time using the generalized gamma ratio distribution.
    Phadnis MA; Wetmore JB; Mayo MS
    Stat Med; 2017 Nov; 36(26):4121-4140. PubMed ID: 28815655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the geometric average hazard ratio in sample size calculation for time-to-event data with composite endpoints.
    Cortés Martínez J; Geskus RB; Kim K; Melis GG
    BMC Med Res Methodol; 2021 May; 21(1):99. PubMed ID: 33957892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample size calculation for two-arm trials with time-to-event endpoint for nonproportional hazards using the concept of Relative Time when inference is built on comparing Weibull distributions.
    Phadnis MA; Mayo MS
    Biom J; 2021 Oct; 63(7):1406-1433. PubMed ID: 34272897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of time to event outcomes in randomized controlled trials by generalized additive models.
    Argyropoulos C; Unruh ML
    PLoS One; 2015; 10(4):e0123784. PubMed ID: 25906075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel sample size formula for the weighted log-rank test under the proportional hazards cure model.
    Xiong X; Wu J
    Pharm Stat; 2017 Jan; 16(1):87-94. PubMed ID: 27860138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.