These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 31097583)
1. Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion. Dehkharghani A; Waisbord N; Dunkel J; Guasto JS Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11119-11124. PubMed ID: 31097583 [TBL] [Abstract][Full Text] [Related]
2. Hydrodynamic dispersion within porous biofilms. Davit Y; Byrne H; Osborne J; Pitt-Francis J; Gavaghan D; Quintard M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012718. PubMed ID: 23410370 [TBL] [Abstract][Full Text] [Related]
3. Microbial competition in porous environments can select against rapid biofilm growth. Coyte KZ; Tabuteau H; Gaffney EA; Foster KR; Durham WM Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E161-E170. PubMed ID: 28007984 [TBL] [Abstract][Full Text] [Related]
4. Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale. Scheidweiler D; Miele F; Peter H; Battin TJ; de Anna P J R Soc Interface; 2020 Mar; 17(164):20200046. PubMed ID: 32208823 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic approaches to bacterial biofilm formation. Kim J; Park HD; Chung S Molecules; 2012 Aug; 17(8):9818-34. PubMed ID: 22895027 [TBL] [Abstract][Full Text] [Related]
6. Microfluidics for bacterial chemotaxis. Ahmed T; Shimizu TS; Stocker R Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322 [TBL] [Abstract][Full Text] [Related]
7. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. Aufrecht JA; Fowlkes JD; Bible AN; Morrell-Falvey J; Doktycz MJ; Retterer ST PLoS One; 2019; 14(6):e0218316. PubMed ID: 31246972 [TBL] [Abstract][Full Text] [Related]
8. Patterns of bacterial motility in microfluidics-confining environments. Tokárová V; Sudalaiyadum Perumal A; Nayak M; Shum H; Kašpar O; Rajendran K; Mohammadi M; Tremblay C; Gaffney EA; Martel S; Nicolau DV; Nicolau DV Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875583 [TBL] [Abstract][Full Text] [Related]
9. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. Croze OA; Sardina G; Ahmed M; Bees MA; Brandt L J R Soc Interface; 2013 Apr; 10(81):20121041. PubMed ID: 23407572 [TBL] [Abstract][Full Text] [Related]
10. Confinement Enhances the Diversity of Microbial Flow Fields. Jeanneret R; Pushkin DO; Polin M Phys Rev Lett; 2019 Dec; 123(24):248102. PubMed ID: 31922880 [TBL] [Abstract][Full Text] [Related]
11. Circular swimming motility and disordered hyperuniform state in an algae system. Huang M; Hu W; Yang S; Liu QX; Zhang HP Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33931505 [TBL] [Abstract][Full Text] [Related]
12. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Drescher K; Dunkel J; Cisneros LH; Ganguly S; Goldstein RE Proc Natl Acad Sci U S A; 2011 Jul; 108(27):10940-5. PubMed ID: 21690349 [TBL] [Abstract][Full Text] [Related]
13. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems. Risse-Buhl U; Anlanger C; Kalla K; Neu TR; Noss C; Lorke A; Weitere M Water Res; 2017 Dec; 127():211-222. PubMed ID: 29049969 [TBL] [Abstract][Full Text] [Related]
14. A web of streamers: biofilm formation in a porous microfluidic device. Valiei A; Kumar A; Mukherjee PP; Liu Y; Thundat T Lab Chip; 2012 Dec; 12(24):5133-7. PubMed ID: 23123600 [TBL] [Abstract][Full Text] [Related]
15. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Kantsler V; Dunkel J; Polin M; Goldstein RE Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1187-92. PubMed ID: 23297240 [TBL] [Abstract][Full Text] [Related]
16. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Lei W; Lu X; Wang M Adv Colloid Interface Sci; 2023 Jan; 311():102826. PubMed ID: 36528919 [TBL] [Abstract][Full Text] [Related]
17. Flagella-induced transitions in the collective behavior of confined microswimmers. Tsang AC; Kanso E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):021001. PubMed ID: 25215680 [TBL] [Abstract][Full Text] [Related]
18. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands. Yan Z; Hilpert M Bull Math Biol; 2014 Oct; 76(10):2449-75. PubMed ID: 25223537 [TBL] [Abstract][Full Text] [Related]
19. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Conrad JC; Poling-Skutvik R Annu Rev Chem Biomol Eng; 2018 Jun; 9():175-200. PubMed ID: 29561646 [TBL] [Abstract][Full Text] [Related]
20. Combining Fluidic Devices with Microscopy and Flow Cytometry to Study Microbial Transport in Porous Media Across Spatial Scales. Scheidweiler D; De Anna P; Battin TJ; Peter H J Vis Exp; 2020 Nov; (165):. PubMed ID: 33311432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]