These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31097583)

  • 21. Interplay of physical mechanisms and biofilm processes: review of microfluidic methods.
    Karimi A; Karig D; Kumar A; Ardekani AM
    Lab Chip; 2015 Jan; 15(1):23-42. PubMed ID: 25385289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions.
    Fridjonsson EO; Seymour JD; Schultz LN; Gerlach R; Cunningham AB; Codd SL
    J Contam Hydrol; 2011 Mar; 120-121():79-88. PubMed ID: 20800317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion of model microorganisms swimming in a nonuniform suspension.
    Ishikawa T; Pedley TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033008. PubMed ID: 25314530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability.
    Yaroshchuk A; Zholkovskiy E; Pogodin S; Baulin V
    Langmuir; 2011 Sep; 27(18):11710-21. PubMed ID: 21812464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphogenesis of Biofilms in Porous Media and Control on Hydrodynamics.
    Kurz DL; Secchi E; Stocker R; Jimenez-Martinez J
    Environ Sci Technol; 2023 Apr; 57(14):5666-5677. PubMed ID: 36976631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glass micromodel study of bacterial dispersion in spatially periodic porous networks.
    Lanning LM; Ford RM
    Biotechnol Bioeng; 2002 Jun; 78(5):556-66. PubMed ID: 12115125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces.
    Secchi E; Vitale A; Miño GL; Kantsler V; Eberl L; Rusconi R; Stocker R
    Nat Commun; 2020 Jun; 11(1):2851. PubMed ID: 32503979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrodynamic interaction of two unsteady model microorganisms.
    Giacché D; Ishikawa T
    J Theor Biol; 2010 Nov; 267(2):252-63. PubMed ID: 20696173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of swarm configuration on fluid transport during vertical collective motion.
    Wilhelmus MM; Nawroth J; Rallabandi B; Dabiri JO
    Bioinspir Biomim; 2019 Nov; 15(1):015002. PubMed ID: 31509804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Succeed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface.
    Molaei M; Sheng J
    Sci Rep; 2016 Oct; 6():35290. PubMed ID: 27752062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemotactic response of marine micro-organisms to micro-scale nutrient layers.
    Seymour JR; Marcos ; Stocker R
    J Vis Exp; 2007; (4):203. PubMed ID: 18979007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures.
    Paule A; Lauga B; Ten-Hage L; Morchain J; Duran R; Paul E; Rols JL
    Water Res; 2011 Nov; 45(18):6107-18. PubMed ID: 21962848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media.
    Thullner M; Baveye P
    Biotechnol Bioeng; 2008 Apr; 99(6):1337-51. PubMed ID: 18023059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling population patterns of chemotactic bacteria in homogeneous porous media.
    Centler F; Fetzer I; Thullner M
    J Theor Biol; 2011 Oct; 287():82-91. PubMed ID: 21824482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluctuating hydrodynamics and microrheology of a dilute suspension of swimming bacteria.
    Lau AW; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011917. PubMed ID: 19658739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multicomponent model of deformation and detachment of a biofilm under fluid flow.
    Tierra G; Pavissich JP; Nerenberg R; Xu Z; Alber MS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25808342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Collective chemotactic dynamics in the presence of self-generated fluid flows.
    Lushi E; Goldstein RE; Shelley MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):040902. PubMed ID: 23214522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluid-driven interfacial instabilities and turbulence in bacterial biofilms.
    Fabbri S; Li J; Howlin RP; Rmaile A; Gottenbos B; De Jager M; Starke EM; Aspiras M; Ward MT; Cogan NG; Stoodley P
    Environ Microbiol; 2017 Nov; 19(11):4417-4431. PubMed ID: 28799690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.