BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31097753)

  • 1. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids.
    Reid JA; Palmer XL; Mollica PA; Northam N; Sachs PC; Bruno RD
    Sci Rep; 2019 May; 9(1):7466. PubMed ID: 31097753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels.
    Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD
    Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform.
    Reid JA; Mollica PA; Bruno RD; Sachs PC
    Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organoid models for mammary gland dynamics and breast cancer.
    Srivastava V; Huycke TR; Phong KT; Gartner ZJ
    Curr Opin Cell Biol; 2020 Oct; 66():51-58. PubMed ID: 32535255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks.
    Sumbal J; Budkova Z; Traustadóttir GÁ; Koledova Z
    J Mammary Gland Biol Neoplasia; 2020 Dec; 25(4):273-288. PubMed ID: 33210256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A human organoid system that self-organizes to recapitulate growth and differentiation of a benign mammary tumor.
    Florian S; Iwamoto Y; Coughlin M; Weissleder R; Mitchison TJ
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11444-11453. PubMed ID: 31101720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling.
    Shukla P; Yeleswarapu S; Heinrich MA; Prakash J; Pati F
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35512666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the Effect of Toxicants on the Intracellular Kinetic Energy and Cross-Sectional Area of Mammary Epithelial Organoids by OCT Fluctuation Spectroscopy.
    Yu X; Fuller AM; Blackmon R; Troester MA; Oldenburg AL
    Toxicol Sci; 2018 Mar; 162(1):234-240. PubMed ID: 29140506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology.
    Trivedi P; Liu R; Bi H; Xu C; Rosenholm JM; Åkerfelt M
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRCA1 mutation influences progesterone response in human benign mammary organoids.
    Davaadelger B; Choi MR; Singhal H; Clare SE; Khan SA; Kim JJ
    Breast Cancer Res; 2019 Nov; 21(1):124. PubMed ID: 31771627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues.
    Mazio C; Casale C; Imparato G; Urciuolo F; Netti PA
    Acta Biomater; 2018 Jun; 73():236-249. PubMed ID: 29679778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sacrificial Bioprinting of a Mammary Ductal Carcinoma Model.
    Duchamp M; Liu T; van Genderen AM; Kappings V; Oklu R; Ellisen LW; Zhang YS
    Biotechnol J; 2019 Oct; 14(10):e1700703. PubMed ID: 30963705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment and characterization of canine mammary tumoroids for translational research.
    Raffo-Romero A; Aboulouard S; Bouchaert E; Rybicka A; Tierny D; Hajjaji N; Fournier I; Salzet M; Duhamel M
    BMC Biol; 2023 Feb; 21(1):23. PubMed ID: 36737789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland.
    Krause S; Maffini MV; Soto AM; Sonnenschein C
    Tissue Eng Part C Methods; 2008 Sep; 14(3):261-71. PubMed ID: 18694322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human glandular organoid formation in murine engineering chambers after collagenase digestion and flow cytometry isolation of normal human breast tissue single cells.
    Huo CW; Huang D; Chew GL; Hill P; Vohora A; Ingman WV; Glynn DJ; Godde N; Henderson MA; Thompson EW; Britt KL
    Cell Biol Int; 2016 Nov; 40(11):1212-1223. PubMed ID: 27590622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment.
    Saglam-Metiner P; Gulce-Iz S; Biray-Avci C
    Gene; 2019 Feb; 686():203-212. PubMed ID: 30481551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of ductal organoids from normal mammary luminal cells reveals invasive potential.
    Ganz HM; Buchmann B; Engelbrecht LK; Jesinghaus M; Eichelberger L; Gabka CJ; Schmidt GP; Muckenhuber A; Weichert W; Bausch AR; Scheel CH
    J Pathol; 2021 Dec; 255(4):451-463. PubMed ID: 34467523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organoid Cultures for the Study of Mammary Biology and Breast Cancer: The Promise and Challenges.
    Muthuswamy SK; Brugge JS
    Cold Spring Harb Perspect Med; 2024 Jul; 14(7):. PubMed ID: 38110241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Coculture of Mammary Organoids with Fibrospheres: A Model for Studying Epithelial-Stromal Interactions During Mammary Branching Morphogenesis.
    Koledova Z
    Methods Mol Biol; 2017; 1612():107-124. PubMed ID: 28634938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.