These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31097780)

  • 1. Imaging local brain activity of multiple freely moving mice sharing the same environment.
    Inagaki S; Agetsuma M; Ohara S; Iijima T; Yokota H; Wazawa T; Arai Y; Nagai T
    Sci Rep; 2019 May; 9(1):7460. PubMed ID: 31097780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically encoded bioluminescent voltage indicator for multi-purpose use in wide range of bioimaging.
    Inagaki S; Tsutsui H; Suzuki K; Agetsuma M; Arai Y; Jinno Y; Bai G; Daniels MJ; Okamura Y; Matsuda T; Nagai T
    Sci Rep; 2017 Feb; 7():42398. PubMed ID: 28205521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.
    Ghitani N; Bayguinov PO; Ma Y; Jackson MB
    J Neurophysiol; 2015 Feb; 113(4):1249-59. PubMed ID: 25411462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice.
    Villette V; Chavarha M; Dimov IK; Bradley J; Pradhan L; Mathieu B; Evans SW; Chamberland S; Shi D; Yang R; Kim BB; Ayon A; Jalil A; St-Pierre F; Schnitzer MJ; Bi G; Toth K; Ding J; Dieudonné S; Lin MZ
    Cell; 2019 Dec; 179(7):1590-1608.e23. PubMed ID: 31835034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.
    Tsutsui H; Jinno Y; Tomita A; Niino Y; Yamada Y; Mikoshiba K; Miyawaki A; Okamura Y
    J Physiol; 2013 Sep; 591(18):4427-37. PubMed ID: 23836686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotion-Related Population Cortical Ca
    Zhang Q; Yao J; Guang Y; Liang S; Guan J; Qin H; Liao X; Jin W; Zhang J; Pan J; Jia H; Yan J; Feng Z; Li W; Chen X
    Front Neural Circuits; 2017; 11():24. PubMed ID: 28439229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread and Highly Correlated Somato-dendritic Activity in Cortical Layer 5 Neurons.
    Beaulieu-Laroche L; Toloza EHS; Brown NJ; Harnett MT
    Neuron; 2019 Jul; 103(2):235-241.e4. PubMed ID: 31178115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull.
    Park AH; Lee SH; Lee C; Kim J; Lee HE; Paik SB; Lee KJ; Kim D
    ACS Nano; 2016 Feb; 10(2):2791-802. PubMed ID: 26735496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of spine calcium dynamics by rapid spine motility.
    Majewska A; Tashiro A; Yuste R
    J Neurosci; 2000 Nov; 20(22):8262-8. PubMed ID: 11069932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors.
    Deng H; Xiao X; Wang Z
    J Neurosci; 2016 Jul; 36(29):7580-8. PubMed ID: 27445137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Head-Mounted Camera System Integrates Detailed Behavioral Monitoring with Multichannel Electrophysiology in Freely Moving Mice.
    Meyer AF; Poort J; O'Keefe J; Sahani M; Linden JF
    Neuron; 2018 Oct; 100(1):46-60.e7. PubMed ID: 30308171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin.
    Baker CA; Elyada YM; Parra A; Bolton MM
    Elife; 2016 Aug; 5():. PubMed ID: 27525487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability.
    Allen BD; Moore-Kochlacs C; Bernstein JG; Kinney JP; Scholvin J; Seoane LF; Chronopoulos C; Lamantia C; Kodandaramaiah SB; Tegmark M; Boyden ES
    J Neurophysiol; 2018 Nov; 120(5):2182-2200. PubMed ID: 29995597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Method for Whole-Cell Recording in Freely Moving Rodents Using Ultraviolet-Cured Collar-Based Pipette Stabilization.
    Lee D; Lee AK
    Cold Spring Harb Protoc; 2017 Apr; 2017(4):pdb.prot095810. PubMed ID: 28373497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based analysis of pattern motion processing in mouse primary visual cortex.
    Muir DR; Roth MM; Helmchen F; Kampa BM
    Front Neural Circuits; 2015; 9():38. PubMed ID: 26300738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically Encoded Voltage Indicators: Opportunities and Challenges.
    Yang HH; St-Pierre F
    J Neurosci; 2016 Sep; 36(39):9977-89. PubMed ID: 27683896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological Recordings from Lobula Plate Tangential Cells in Drosophila.
    Mauss AS; Borst A
    Methods Mol Biol; 2016; 1478():321-332. PubMed ID: 27730592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segregated Subnetworks of Intracortical Projection Neurons in Primary Visual Cortex.
    Kim MH; Znamenskiy P; Iacaruso MF; Mrsic-Flogel TD
    Neuron; 2018 Dec; 100(6):1313-1321.e6. PubMed ID: 30415996
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.