These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31098021)

  • 1. Determination of the molecular basis for coprogen import by Gram-negative bacteria.
    Grinter R; Lithgow T
    IUCrJ; 2019 May; 6(Pt 3):401-411. PubMed ID: 31098021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of functional domains in the Escherichia coli coprogen receptor FhuE and the Pseudomonas putida ferric-pseudobactin 358 receptor PupA.
    Bitter W; van Leeuwen IS; de Boer J; Zomer HW; Koster MC; Weisbeek PJ; Tommassen J
    Mol Gen Genet; 1994 Dec; 245(6):694-703. PubMed ID: 7830717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa FpvB Is a High-Affinity Transporter for Xenosiderophores Ferrichrome and Ferrioxamine B.
    Chan DCK; Burrows LL
    mBio; 2023 Feb; 14(1):e0314922. PubMed ID: 36507834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron uptake pathway of
    Tsylents U; Burmistrz M; Wojciechowska M; Stępień J; Maj P; Trylska J
    Front Microbiol; 2024; 15():1331021. PubMed ID: 38357356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferric-coprogen receptor FhuE of Escherichia coli: processing and sequence common to all TonB-dependent outer membrane receptor proteins.
    Sauer M; Hantke K; Braun V
    J Bacteriol; 1987 May; 169(5):2044-9. PubMed ID: 3032906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin.
    Clarke TE; Braun V; Winkelmann G; Tari LW; Vogel HJ
    J Biol Chem; 2002 Apr; 277(16):13966-72. PubMed ID: 11805094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral linear hydroxamates as biomimetic analogues of ferrioxamine and coprogen and their use in probing siderophore-receptor specificity in bacteria and fungi.
    Berner I; Yakirevitch P; Libman J; Shanzer A; Winkelmann G
    Biol Met; 1991; 4(3):186-91. PubMed ID: 1657086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron transport systems of Serratia marcescens.
    Angerer A; Klupp B; Braun V
    J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, sequencing, and characterization of the Azospirillum brasilense fhuE gene.
    Cui Y; Tu R; Guan Y; Ma L; Chen S
    Curr Microbiol; 2006 Mar; 52(3):169-77. PubMed ID: 16502288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of iron-regulated membrane proteins identify FhuE receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii.
    Tiwari V; Rajeswari MR; Tiwari M
    Int J Biol Macromol; 2019 Mar; 125():1156-1167. PubMed ID: 30579900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of an outer membrane receptor gene in Acinetobacter baumannii required for utilization of desferricoprogen, rhodotorulic acid, and desferrioxamine B as xenosiderophores.
    Funahashi T; Tanabe T; Mihara K; Miyamoto K; Tsujibo H; Yamamoto S
    Biol Pharm Bull; 2012; 35(5):753-60. PubMed ID: 22687412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics.
    Page MGP
    Clin Infect Dis; 2019 Nov; 69(Suppl 7):S529-S537. PubMed ID: 31724044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective growth promotion and growth inhibition of gram-negative and gram-positive bacteria by synthetic siderophore-beta-lactam conjugates.
    Möllmann U; Ghosh A; Dolence EK; Dolence JA; Ghosh M; Miller MJ; Reissbrodt R
    Biometals; 1998 Jan; 11(1):1-12. PubMed ID: 9450313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TonB-dependent receptors-structural perspectives.
    Ferguson AD; Deisenhofer J
    Biochim Biophys Acta; 2002 Oct; 1565(2):318-32. PubMed ID: 12409204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and genetic identification of amphiphilic coprogen siderophores from Trichoderm hypoxylon.
    Zhang J; Qi L; Chen G; Yin WB
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2831-2839. PubMed ID: 33758985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters.
    Schalk IJ; Mislin GL; Brillet K
    Curr Top Membr; 2012; 69():37-66. PubMed ID: 23046646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12.
    Hantke K
    Mol Gen Genet; 1983; 191(2):301-6. PubMed ID: 6353165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trojan Horse Siderophore Conjugates Induce
    Peukert C; Gasser V; Orth T; Fritsch S; Normant V; Cunrath O; Schalk IJ; Brönstrup M
    J Med Chem; 2023 Jan; 66(1):553-576. PubMed ID: 36548006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways.
    Schalk IJ; Guillon L
    Amino Acids; 2013 May; 44(5):1267-77. PubMed ID: 23443998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake Mechanisms and Regulatory Responses to MECAM- and DOTAM-Based Artificial Siderophores and Their Antibiotic Conjugates in
    Fritsch S; Gasser V; Peukert C; Pinkert L; Kuhn L; Perraud Q; Normant V; Brönstrup M; Schalk IJ
    ACS Infect Dis; 2022 Jun; 8(6):1134-1146. PubMed ID: 35500104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.