These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 31098416)

  • 1. diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering.
    Weber LM; Nowicka M; Soneson C; Robinson MD
    Commun Biol; 2019; 2():183. PubMed ID: 31098416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational approaches for high-throughput single-cell data analysis.
    Todorov H; Saeys Y
    FEBS J; 2019 Apr; 286(8):1451-1467. PubMed ID: 30058136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CyCadas: accelerating interactive annotation and analysis of clustered cytometry data.
    Hunewald O; Demczuk A; Longworth J; Ollert M
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39374546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable multi-sample single-cell data analysis by Partition-Assisted Clustering and Multiple Alignments of Networks.
    Li YH; Li D; Samusik N; Wang X; Guan L; Nolan GP; Wong WH
    PLoS Comput Biol; 2017 Dec; 13(12):e1005875. PubMed ID: 29281633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of essential phenotypic elements of clusters in high-dimensional entities-DEPECHE.
    Theorell A; Bryceson YT; Theorell J
    PLoS One; 2019; 14(3):e0203247. PubMed ID: 30845234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre.
    Ashhurst TM; Marsh-Wakefield F; Putri GH; Spiteri AG; Shinko D; Read MN; Smith AL; King NJC
    Cytometry A; 2022 Mar; 101(3):237-253. PubMed ID: 33840138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised flow cytometry analysis in hematological malignancies: A new paradigm.
    Béné MC; Lacombe F; Porwit A
    Int J Lab Hematol; 2021 Jul; 43 Suppl 1():54-64. PubMed ID: 34288436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets.
    Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T
    Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Opzoomer JW; Timms JA; Blighe K; Mourikis TP; Chapuis N; Bekoe R; Kareemaghay S; Nocerino P; Apollonio B; Ramsay AG; Tavassoli M; Harrison C; Ciccarelli F; Parker P; Fontenay M; Barber PR; Arnold JN; Kordasti S
    Elife; 2021 Apr; 10():. PubMed ID: 33929322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in unsupervised clustering of single-cell RNA-seq data.
    Kiselev VY; Andrews TS; Hemberg M
    Nat Rev Genet; 2019 May; 20(5):273-282. PubMed ID: 30617341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient cytometry analysis with FlowSOM in Python boosts interoperability with other single-cell tools.
    Couckuyt A; Rombaut B; Saeys Y; Van Gassen S
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38632080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Misty Mountain clustering: application to fast unsupervised flow cytometry gating.
    Sugár IP; Sealfon SC
    BMC Bioinformatics; 2010 Oct; 11():502. PubMed ID: 20932336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JSOM: Jointly-evolving self-organizing maps for alignment of biological datasets and identification of related clusters.
    Lim HS; Qiu P
    PLoS Comput Biol; 2021 Mar; 17(3):e1008804. PubMed ID: 33724985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering Single-Cell Expression Data Using Random Forest Graphs.
    Pouyan MB; Nourani M
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):1172-1181. PubMed ID: 28113735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing high-dimensional cytometry data using FlowSOM.
    Quintelier K; Couckuyt A; Emmaneel A; Aerts J; Saeys Y; Van Gassen S
    Nat Protoc; 2021 Aug; 16(8):3775-3801. PubMed ID: 34172973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.
    Lee AJ; Chang I; Burel JG; Lindestam Arlehamn CS; Mandava A; Weiskopf D; Peters B; Sette A; Scheuermann RH; Qian Y
    Cytometry A; 2018 Jun; 93(6):597-610. PubMed ID: 29665244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Cell Populations in Single Cell Mass Cytometry Data.
    Abdelaal T; van Unen V; Höllt T; Koning F; Reinders MJT; Mahfouz A
    Cytometry A; 2019 Jul; 95(7):769-781. PubMed ID: 30861637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K-means quantization for a web-based open-source flow cytometry analysis platform.
    Wong N; Kim D; Robinson Z; Huang C; Conboy IM
    Sci Rep; 2021 Mar; 11(1):6735. PubMed ID: 33762594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.