BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 31098676)

  • 1. Why are so many MLL lysine methyltransferases required for normal mammalian development?
    Crump NT; Milne TA
    Cell Mol Life Sci; 2019 Aug; 76(15):2885-2898. PubMed ID: 31098676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights on the regulation of the MLL/SET1 family histone methyltransferases.
    Sha L; Ayoub A; Cho US; Dou Y
    Biochim Biophys Acta Gene Regul Mech; 2020 Jul; 1863(7):194561. PubMed ID: 32304759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of nucleosome recognition and modification by MLL methyltransferases.
    Xue H; Yao T; Cao M; Zhu G; Li Y; Yuan G; Chen Y; Lei M; Huang J
    Nature; 2019 Sep; 573(7774):445-449. PubMed ID: 31485071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SET/MLL family proteins in hematopoiesis and leukemia.
    Yang W; Ernst P
    Int J Hematol; 2017 Jan; 105(1):7-16. PubMed ID: 27796741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a "two-active site" model for multiple histone H3 lysine 4 methylation.
    Patel A; Vought VE; Swatkoski S; Viggiano S; Howard B; Dharmarajan V; Monteith KE; Kupakuwana G; Namitz KE; Shinsky SA; Cotter RJ; Cosgrove MS
    J Biol Chem; 2014 Jan; 289(2):868-84. PubMed ID: 24235145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex.
    Patel A; Dharmarajan V; Vought VE; Cosgrove MS
    J Biol Chem; 2009 Sep; 284(36):24242-56. PubMed ID: 19556245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line.
    Li T; Kelly WG
    PLoS Genet; 2011 Mar; 7(3):e1001349. PubMed ID: 21455483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MLL core components give the green light to histone methylation.
    Crawford BD; Hess JL
    ACS Chem Biol; 2006 Sep; 1(8):495-8. PubMed ID: 17168535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia.
    Zhu L; Li Q; Wong SH; Huang M; Klein BJ; Shen J; Ikenouye L; Onishi M; Schneidawind D; Buechele C; Hansen L; Duque-Afonso J; Zhu F; Martin GM; Gozani O; Majeti R; Kutateladze TG; Cleary ML
    Cancer Discov; 2016 Jul; 6(7):770-83. PubMed ID: 27154821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II.
    Wang P; Lin C; Smith ER; Guo H; Sanderson BW; Wu M; Gogol M; Alexander T; Seidel C; Wiedemann LM; Ge K; Krumlauf R; Shilatifard A
    Mol Cell Biol; 2009 Nov; 29(22):6074-85. PubMed ID: 19703992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for activity regulation of MLL family methyltransferases.
    Li Y; Han J; Zhang Y; Cao F; Liu Z; Li S; Wu J; Hu C; Wang Y; Shuai J; Chen J; Cao L; Li D; Shi P; Tian C; Zhang J; Dou Y; Li G; Chen Y; Lei M
    Nature; 2016 Feb; 530(7591):447-52. PubMed ID: 26886794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia.
    Cao F; Townsend EC; Karatas H; Xu J; Li L; Lee S; Liu L; Chen Y; Ouillette P; Zhu J; Hess JL; Atadja P; Lei M; Qin ZS; Malek S; Wang S; Dou Y
    Mol Cell; 2014 Jan; 53(2):247-61. PubMed ID: 24389101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel non-SET domain multi-subunit methyltransferase required for sequential nucleosomal histone H3 methylation by the mixed lineage leukemia protein-1 (MLL1) core complex.
    Patel A; Vought VE; Dharmarajan V; Cosgrove MS
    J Biol Chem; 2011 Feb; 286(5):3359-69. PubMed ID: 21106533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation.
    Shinsky SA; Monteith KE; Viggiano S; Cosgrove MS
    J Biol Chem; 2015 Mar; 290(10):6361-75. PubMed ID: 25561738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes.
    Gregory GD; Vakoc CR; Rozovskaia T; Zheng X; Patel S; Nakamura T; Canaani E; Blobel GA
    Mol Cell Biol; 2007 Dec; 27(24):8466-79. PubMed ID: 17923682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases.
    Rao RC; Dou Y
    Nat Rev Cancer; 2015 Jun; 15(6):334-46. PubMed ID: 25998713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes.
    Steward MM; Lee JS; O'Donovan A; Wyatt M; Bernstein BE; Shilatifard A
    Nat Struct Mol Biol; 2006 Sep; 13(9):852-4. PubMed ID: 16892064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket.
    Song JJ; Kingston RE
    J Biol Chem; 2008 Dec; 283(50):35258-64. PubMed ID: 18840606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for product specificities of MLL family methyltransferases.
    Li Y; Zhao L; Zhang Y; Wu P; Xu Y; Mencius J; Zheng Y; Wang X; Xu W; Huang N; Ye X; Lei M; Shi P; Tian C; Peng C; Li G; Liu Z; Quan S; Chen Y
    Mol Cell; 2022 Oct; 82(20):3810-3825.e8. PubMed ID: 36108631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of MLL1 H3K4 methyltransferase activity by its core components.
    Dou Y; Milne TA; Ruthenburg AJ; Lee S; Lee JW; Verdine GL; Allis CD; Roeder RG
    Nat Struct Mol Biol; 2006 Aug; 13(8):713-9. PubMed ID: 16878130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.