These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 31098704)
1. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
2. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Wu Y; Deng P; Tian Y; Ding Z; Li G; Liu J; Zuberi Z; He Q Bioelectrochemistry; 2020 Feb; 131():107393. PubMed ID: 31698180 [TBL] [Abstract][Full Text] [Related]
3. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
4. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Yang X; Niu X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Mikrochim Acta; 2019 May; 186(6):333. PubMed ID: 31065866 [TBL] [Abstract][Full Text] [Related]
5. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948 [TBL] [Abstract][Full Text] [Related]
6. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Song J; Yang C; Ma J; Han Q; Ran P; Fu Y Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758 [TBL] [Abstract][Full Text] [Related]
7. The application of thionine-graphene nanocomposite in chiral sensing for Tryptophan enantiomers. Guo L; Zhang Q; Huang Y; Han Q; Wang Y; Fu Y Bioelectrochemistry; 2013 Dec; 94():87-93. PubMed ID: 24084594 [TBL] [Abstract][Full Text] [Related]
8. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
9. Selective recognition of D-tryptophan from d/l-tryptophan mixtures in the presence of Cu(II) by electropolymerized L-lysine film. Wang F; Gong W; Wang L; Chen Z Anal Biochem; 2016 Jan; 492():30-3. PubMed ID: 26364949 [TBL] [Abstract][Full Text] [Related]
10. Modified glassy carbon electrode with Polydopamine-multiwalled carbon nanotubes for simultaneous electrochemical determination of biocompounds in biological fluids. Shahbakhsh M; Narouie S; Noroozifar M J Pharm Biomed Anal; 2018 Nov; 161():66-72. PubMed ID: 30145451 [TBL] [Abstract][Full Text] [Related]
11. Chirality detection of amino acid enantiomers by organic electrochemical transistor. Zhang L; Wang G; Xiong C; Zheng L; He J; Ding Y; Lu H; Zhang G; Cho K; Qiu L Biosens Bioelectron; 2018 May; 105():121-128. PubMed ID: 29412935 [TBL] [Abstract][Full Text] [Related]
12. The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Jing P; Yin ZZ; Cai W; Li J; Wu D; Kong Y Bioelectrochemistry; 2022 Aug; 146():108110. PubMed ID: 35367932 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Niu X; Yang X; Mo Z; Liu N; Guo R; Pan Z; Liu Z Mikrochim Acta; 2019 Jul; 186(8):557. PubMed ID: 31327066 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
15. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
16. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers. Pan QX; Yang YC; Zhao NN; Zhang B; Cui L; Zhang CY Anal Chim Acta; 2023 Sep; 1272():341480. PubMed ID: 37355327 [TBL] [Abstract][Full Text] [Related]
17. Constructing electrochemical sensor using molecular-imprinted polysaccharide for rapid identification and determination of l-tryptophan in diet. Li YJ; Yang LL; Ni L; Xiong JM; He JY; Zhou LD; Luo L; Zhang QH; Yuan CS Food Chem; 2023 Nov; 425():136486. PubMed ID: 37267785 [TBL] [Abstract][Full Text] [Related]
18. A Voltammetric Sensor Based on Modified Multi-Walled Carbon Nanotubes for N-Acetyl-L-Cysteine Determination in the Presence of Tryptophan Using 4-Chlorocatechol as a Homogenous Electrochemical Catalyst. Jahanshahi B; Raoof JB; Amiri-Aref M; Ojani R J Nanosci Nanotechnol; 2015 May; 15(5):3429-36. PubMed ID: 26504962 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe Wu W; Jia M; Wang Z; Zhang W; Zhang Q; Liu G; Zhang Z; Li P Mikrochim Acta; 2019 Jan; 186(2):97. PubMed ID: 30631955 [TBL] [Abstract][Full Text] [Related]
20. Chiral MOFs encapsulated by polymers with poly-metallic coordination as chiral biosensors. Niu X; Zhao R; Yan S; Li H; Yang J; Cao K; Liu X; Wang K Mikrochim Acta; 2023 May; 190(6):230. PubMed ID: 37208529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]