BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3109874)

  • 1. Fate of 2,5,4'-trichlorobiphenyl in outdoor ponds and its uptake via the food chain compared with direct uptake via the gills in grass carp and rainbow trout.
    Crossland NO; Bennett D; Wolff CJ
    Ecotoxicol Environ Saf; 1987 Apr; 13(2):225-38. PubMed ID: 3109874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose determinations for waterborne 2,5,2',5'-[14C]tetrachlorobiphenyl and related pharmacokinetics in two species of trout (Salmo gairdneri and Salvelinus fontinalis): a mass-balance approach.
    McKim JM; Heath EM
    Toxicol Appl Pharmacol; 1983 Apr; 68(2):177-87. PubMed ID: 6407150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the elimination of arsenic by the gills of rainbow trout (Salmo gairdneri) by using a two compartment respirometer.
    Oladimeji AA; Qadri SU; deFreitas AS
    Bull Environ Contam Toxicol; 1984 Jun; 32(6):661-8. PubMed ID: 6743855
    [No Abstract]   [Full Text] [Related]  

  • 4. Fate and biological effects of methyl parathion in outdoor ponds and laboratory aquaria. I. Fate.
    Crossland NO; Bennett D
    Ecotoxicol Environ Saf; 1984 Oct; 8(5):471-81. PubMed ID: 6489242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Qualitative and quantitative distribution of 7 enzymes in organs of the rainbow trout (Salmo gairdneri R.) and the carp (Cyprinus carpio)].
    Scheinert P; Hoffmann R
    Zentralbl Veterinarmed A; 1987 May; 34(5):339-43. PubMed ID: 3113116
    [No Abstract]   [Full Text] [Related]  

  • 6. [Digestive utilization of purified cellulose in the rainbow trout (Salmo gairdneri) and the common carp (Cyprinus carpio)].
    Bergot F
    Reprod Nutr Dev (1980); 1981; 21(1):83-93. PubMed ID: 7349525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-specific Cu bioaccumulation patterns and differences in sensitivity to waterborne Cu in three freshwater fish: rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and gibel carp (Carassius auratus gibelio).
    De Boeck G; Meeus W; De Coen W; Blust R
    Aquat Toxicol; 2004 Dec; 70(3):179-88. PubMed ID: 15550275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of sediment-bound bioavailable polychlorobiphenyls by benthivorous carp (Cyprinus carpio).
    Moermond CT; Roozen FC; Zwolsman JJ; Koelmans AA
    Environ Sci Technol; 2004 Sep; 38(17):4503-9. PubMed ID: 15461156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some characteristics of mitochondrial monoamine oxidase activity in eggs of carp (Cyprinus carpio) and rainbow trout (Salmo gairdneri).
    Nicotra A; Senatori O
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(2):401-4. PubMed ID: 2565193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu.
    Eyckmans M; Blust R; De Boeck G
    Aquat Toxicol; 2012 Aug; 118-119():97-107. PubMed ID: 22542735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake metabolism, and elimination of 14C-labeled 1,2,4-trichlorobenzene in rainbow trout and carp.
    Melancon MJ; Lech JJ
    J Toxicol Environ Health; 1980 May; 6(3):645-58. PubMed ID: 7420471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of pollutants in fish.
    Gluth G; Freitag D; Hanke W; Korte F
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):273-7. PubMed ID: 2861946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of 7,12-dimethylbenz(a)anthracene in rainbow trout, Salmo gairdneri.
    Schnitz AR; Squibb KS; O'Connor JM
    Bull Environ Contam Toxicol; 1987 Jul; 39(1):29-36. PubMed ID: 3111568
    [No Abstract]   [Full Text] [Related]  

  • 14. Does the natural diet influence the intestine's ability to regulate glucose absorption?
    Buddington RK
    J Comp Physiol B; 1987; 157(5):677-88. PubMed ID: 3693623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing polychlorinated biphenyl exposure pathways from sediment and water in aquatic life using a food web bioaccumulation model.
    Li J; McPhedran K; Szalińska E; McLeod AM; Bhavsar SP; Bohr J; Grgicak-Mannion A; Drouillard K
    Integr Environ Assess Manag; 2019 May; 15(3):398-411. PubMed ID: 30675769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure.
    De Boeck G; van der Ven K; Hattink J; Blust R
    Aquat Toxicol; 2006 Oct; 80(1):92-100. PubMed ID: 16956679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake, tissue distribution, and clearance of the selective piscicide 1,1'-methylenedi-2-naphthol (Squoxin) by the rainbow trout and the squawfish.
    Terriere LC; Burnard RJ
    J Agric Food Chem; 1975; 23(4):714-7. PubMed ID: 1141520
    [No Abstract]   [Full Text] [Related]  

  • 18. A method for evaluating effects of toxic chemicals on the productivity of freshwater ecosystems.
    Crossland NO
    Ecotoxicol Environ Saf; 1988 Dec; 16(3):279-92. PubMed ID: 3229382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The perfused fish gill preparation in studies of the bioavailability of chemicals.
    Pärt P
    Ecotoxicol Environ Saf; 1990 Feb; 19(1):106-15. PubMed ID: 2311557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Net trophic transfer efficiencies of polychlorinated biphenyl congeners to lake trout (Salvelinus namaycush) from its prey.
    Madenjian CP; David SR; Rediske RR; O'Keefe JP
    Environ Toxicol Chem; 2012 Dec; 31(12):2821-7. PubMed ID: 22927164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.