BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 31099049)

  • 1. Further in vivo evidence implying DNA apurinic/apyrimidinic endonuclease activity in Trypanosoma cruzi oxidative stress survival.
    Valenzuela L; Sepúlveda S; Bahamondes P; Ramirez-Toloza G; Galanti N; Cabrera G
    J Cell Biochem; 2019 Oct; 120(10):16733-16740. PubMed ID: 31099049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The overexpression of TcAP1 endonuclease confers resistance to infective Trypanosoma cruzi trypomastigotes against oxidative DNA damage.
    Valenzuela L; Sepúlveda S; Ponce I; Galanti N; Cabrera G
    J Cell Biochem; 2018 Jul; 119(7):5985-5995. PubMed ID: 29575156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression, functionality, and localization of apurinic/apyrimidinic endonucleases in replicative and non-replicative forms of Trypanosoma cruzi.
    Sepúlveda S; Valenzuela L; Ponce I; Sierra S; Bahamondes P; Ramirez S; Rojas V; Kemmerling U; Galanti N; Cabrera G
    J Cell Biochem; 2014 Feb; 115(2):397-409. PubMed ID: 24114998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Flap Endonuclease (TcFEN1) Is Involved in Trypanosoma cruzi Cell Proliferation, DNA Repair, and Parasite Survival.
    Ponce I; Aldunate C; Valenzuela L; Sepúlveda S; Garrido G; Kemmerling U; Cabrera G; Galanti N
    J Cell Biochem; 2017 Jul; 118(7):1722-1732. PubMed ID: 27935092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase.
    Ormeño F; Barrientos C; Ramirez S; Ponce I; Valenzuela L; Sepúlveda S; Bitar M; Kemmerling U; Machado CR; Cabrera G; Galanti N
    PLoS One; 2016; 11(6):e0157270. PubMed ID: 27284968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockout of the gamma subunit of the AP-1 adaptor complex in the human parasite Trypanosoma cruzi impairs infectivity and differentiation and prevents the maturation and targeting of the major protease cruzipain.
    Moreira CMDN; Batista CM; Fernandes JC; Kessler RL; Soares MJ; Fragoso SP
    PLoS One; 2017; 12(7):e0179615. PubMed ID: 28759609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form.
    Alcantara MV; Kessler RL; Gonçalves REG; Marliére NP; Guarneri AA; Picchi GFA; Fragoso SP
    Mol Biochem Parasitol; 2018 Apr; 221():1-9. PubMed ID: 29409763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reevaluating the Trypanosoma cruzi proteomic map: The shotgun description of bloodstream trypomastigotes.
    Brunoro GV; Caminha MA; Ferreira AT; Leprevost Fda V; Carvalho PC; Perales J; Valente RH; Menna-Barreto RF
    J Proteomics; 2015 Feb; 115():58-65. PubMed ID: 25534883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase beta from Trypanosoma cruzi is involved in kinetoplast DNA replication and repair of oxidative lesions.
    Schamber-Reis BL; Nardelli S; Régis-Silva CG; Campos PC; Cerqueira PG; Lima SA; Franco GR; Macedo AM; Pena SD; Cazaux C; Hoffmann JS; Motta MC; Schenkman S; Teixeira SM; Machado CR
    Mol Biochem Parasitol; 2012 Jun; 183(2):122-31. PubMed ID: 22369885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanothione synthetase confers growth, survival advantage and resistance to anti-protozoal drugs in Trypanosoma cruzi.
    Mesías AC; Sasoni N; Arias DG; Pérez Brandán C; Orban OCF; Kunick C; Robello C; Comini MA; Garg NJ; Zago MP
    Free Radic Biol Med; 2019 Jan; 130():23-34. PubMed ID: 30359758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectonucleotidases from trypomastigotes from different sources and various genetic backgrounds of Trypanosoma cruzi potentiate their infectivity and host inflammation.
    Leite ALJ; Oliveira DS; Mota LWR; Carvalho LCF; Zimmermann FF; Paiva NCN; Vieira PMA; de Lana M; Afonso LCC; Talvani A
    Cytokine; 2020 Dec; 136():155255. PubMed ID: 32866897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms.
    Serrano AA; Schenkman S; Yoshida N; Mehlert A; Richardson JM; Ferguson MA
    J Biol Chem; 1995 Nov; 270(45):27244-53. PubMed ID: 7592983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The major Arabidopsis thaliana apurinic/apyrimidinic endonuclease, ARP is involved in the plant nucleotide incision repair pathway.
    Akishev Z; Taipakova S; Joldybayeva B; Zutterling C; Smekenov I; Ishchenko AA; Zharkov DO; Bissenbaev AK; Saparbaev M
    DNA Repair (Amst); 2016 Dec; 48():30-42. PubMed ID: 27836324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi.
    Alves MJ; Kawahara R; Viner R; Colli W; Mattos EC; Thaysen-Andersen M; Larsen MR; Palmisano G
    J Proteomics; 2017 Jan; 151():182-192. PubMed ID: 27318177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling
    Smircich P; Pérez-Díaz L; Hernández F; Duhagon MA; Garat B
    Front Cell Infect Microbiol; 2023; 13():1138456. PubMed ID: 37091675
    [No Abstract]   [Full Text] [Related]  

  • 17. The in vivo and in vitro roles of Trypanosoma cruzi Rad51 in the repair of DNA double strand breaks and oxidative lesions.
    Gomes Passos Silva D; da Silva Santos S; Nardelli SC; Mendes IC; Freire ACG; Repolês BM; Resende BC; Costa-Silva HM; da Silva VS; Oliveira KA; Oliveira CFB; Vilela LFF; Nagem RAP; Franco GR; Macedo AM; Pena SDJ; Tahara EB; Sales Junior PA; Moreira DS; Teixeira SMR; McCulloch R; Virgilio S; Tosi LRO; Schenkman S; Andrade LO; Murta SMF; Machado CR
    PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006875. PubMed ID: 30422982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host.
    Kessler RL; Contreras VT; Marliére NP; Aparecida Guarneri A; Villamizar Silva LH; Mazzarotto GACA; Batista M; Soccol VT; Krieger MA; Probst CM
    Mol Microbiol; 2017 Jun; 104(5):712-736. PubMed ID: 28240790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Trypanosoma cruzi MutY DNA glycosylase ortholog and its role in oxidative stress response.
    Kunrath-Lima M; Repolês BM; Alves CL; Furtado C; Rajão MA; Macedo AM; Franco GR; Pena SDJ; Valenzuela L; Wisnovsky S; Kelley SO; Galanti N; Cabrera G; Machado CR
    Infect Genet Evol; 2017 Nov; 55():332-342. PubMed ID: 28970112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells.
    Thakur S; Dhiman M; Mantha AK
    Mol Cell Biochem; 2018 Apr; 441(1-2):201-216. PubMed ID: 28887667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.