These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31099234)

  • 1. Coalescence of Surfactant-Stabilized Adjacent Droplets Using Surface Acoustic Waves.
    Sesen M; Fakhfouri A; Neild A
    Anal Chem; 2019 Jun; 91(12):7538-7545. PubMed ID: 31099234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Triggered Merging of Surfactant-Stabilized Droplet Pairs Using Traveling Surface Acoustic Waves.
    Bussiere V; Vigne A; Link A; McGrath J; Srivastav A; Baret JC; Franke T
    Anal Chem; 2019 Nov; 91(21):13978-13985. PubMed ID: 31576738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic on-demand droplet merging using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap.
    Narayan S; Makhnenko I; Moravec DB; Hauser BG; Dallas AJ; Dutcher CS
    Langmuir; 2020 Aug; 36(33):9827-9842. PubMed ID: 32693603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective droplet coalescence using microfluidic systems.
    Mazutis L; Griffiths AD
    Lab Chip; 2012 Apr; 12(10):1800-6. PubMed ID: 22453914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coalescence-assisted generation of single nanoliter droplets with predefined composition.
    Shemesh J; Nir A; Bransky A; Levenberg S
    Lab Chip; 2011 Oct; 11(19):3225-30. PubMed ID: 21826345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coalescence of Droplets in a Microwell Driven by Surface Acoustic Waves.
    Sudeepthi A; Nath A; Yeo LY; Sen AK
    Langmuir; 2021 Feb; 37(4):1578-1587. PubMed ID: 33478219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some general features of limited coalescence in solid-stabilized emulsions.
    Arditty S; Whitby CP; Binks BP; Schmitt V; Leal-Calderon F
    Eur Phys J E Soft Matter; 2003 Jul; 11(3):273-281. PubMed ID: 15011047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Demand Droplet Merging with an AC Electric Field for Multiple-Volume Droplet Generation.
    Teo AJT; Tan SH; Nguyen NT
    Anal Chem; 2020 Jan; 92(1):1147-1153. PubMed ID: 31763821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coalescence of Binary Droplets in the Transformer Oil Based on Small Amounts of Polymer: Effects of Initial Droplet Diameter and Collision Parameter.
    Wang Y; Qian L; Chen Z; Zhou F
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32917051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active or Passive On-Demand Droplet Merging in a Microfluidic Valve-Based Trap.
    Babahosseini H; Misteli T; DeVoe DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5350-5353. PubMed ID: 30441545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically induced coalescence in droplet-based microfluidics.
    Akartuna I; Aubrecht DM; Kodger TE; Weitz DA
    Lab Chip; 2015 Feb; 15(4):1140-4. PubMed ID: 25537080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-droplet microparticle separation using travelling surface acoustic wave.
    Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ
    Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.
    Luo X; Cao J; He L; Wang H; Yan H; Qin Y
    Ultrason Sonochem; 2017 Jan; 34():839-846. PubMed ID: 27773311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coalescence of droplets laden with insoluble surfactant on a preset liquid film.
    Li C; Lin Y; Zhang R; Ye X
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):14. PubMed ID: 29380274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size.
    Zagnoni M; Cooper JM
    Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.