BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 31099391)

  • 1. Accurate differential analysis of transcription factor activity from gene expression.
    Amin V; Ağaç D; Barnes SD; Çobanoğlu MC
    Bioinformatics; 2019 Dec; 35(23):5018-5029. PubMed ID: 31099391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities.
    Müller-Dott S; Tsirvouli E; Vazquez M; Ramirez Flores RO; Badia-I-Mompel P; Fallegger R; Türei D; Lægreid A; Saez-Rodriguez J
    Nucleic Acids Res; 2023 Nov; 51(20):10934-10949. PubMed ID: 37843125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RTNduals: an R/Bioconductor package for analysis of co-regulation and inference of dual regulons.
    Chagas VS; Groeneveld CS; Oliveira KG; Trefflich S; de Almeida RC; Ponder BAJ; Meyer KB; Jones SJM; Robertson AG; Castro MAA
    Bioinformatics; 2019 Dec; 35(24):5357-5358. PubMed ID: 31250887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring TF activities and activity regulators from gene expression data with constraints from TF perturbation data.
    Ma CZ; Brent MR
    Bioinformatics; 2021 Jun; 37(9):1234-1245. PubMed ID: 33135076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of novel transcription factor regulons through inference of their binding sites.
    Elmas A; Wang X; Samoilov MS
    BMC Bioinformatics; 2015 Sep; 16():299. PubMed ID: 26388177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of context-specific gene regulatory networks with GEMULA--gene expression modeling using LAsso.
    Geeven G; van Kesteren RE; Smit AB; de Gunst MC
    Bioinformatics; 2012 Jan; 28(2):214-21. PubMed ID: 22106333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning combinatorial transcriptional dynamics from gene expression data.
    Opper M; Sanguinetti G
    Bioinformatics; 2010 Jul; 26(13):1623-9. PubMed ID: 20444835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIP: the regulatory interaction predictor--a machine learning-based approach for predicting target genes of transcription factors.
    Bauer T; Eils R; König R
    Bioinformatics; 2011 Aug; 27(16):2239-47. PubMed ID: 21690103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prior-based integrative framework for functional transcriptional regulatory network inference.
    Siahpirani AF; Roy S
    Nucleic Acids Res; 2017 Feb; 45(4):e21. PubMed ID: 27794550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic target function annotation of human transcription factors.
    Li YF; Altman RB
    BMC Biol; 2018 Jan; 16(1):4. PubMed ID: 29325558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing therapeutic signatures of transcription factors in cancer by incorporating profiles in compound treated cells.
    Jung J
    Bioinformatics; 2021 May; 37(7):1008-1014. PubMed ID: 32886093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motif-Raptor: a cell type-specific and transcription factor centric approach for post-GWAS prioritization of causal regulators.
    Yao Q; Ferragina P; Reshef Y; Lettre G; Bauer DE; Pinello L
    Bioinformatics; 2021 Aug; 37(15):2103-2111. PubMed ID: 33532840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the problem of confounders in modeling gene expression.
    Schmidt F; Schulz MH
    Bioinformatics; 2019 Feb; 35(4):711-719. PubMed ID: 30084962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TopicNet: a framework for measuring transcriptional regulatory network change.
    Lou S; Li T; Kong X; Zhang J; Liu J; Lee D; Gerstein M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i474-i481. PubMed ID: 32657410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR4Cancer: a web server prioritizing master regulators for cancer.
    Ru B; Tong Y; Zhang J
    Bioinformatics; 2019 Feb; 35(4):636-642. PubMed ID: 30052770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering transcriptional regulations coordinating the response to environmental changes.
    Acuña V; Aravena A; Guziolowski C; Eveillard D; Siegel A; Maass A
    BMC Bioinformatics; 2016 Jan; 17():35. PubMed ID: 26772805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.