These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 31099567)
1. Improved Utility of Pentoses from Lignocellulolytic Hydrolysate: Challenges and Perspectives for Enabling Saccharomyces cerevisiae. da Silva RR; Prista C; Loureiro Dias MC; Boscolo M; da Silva R; Gomes E J Agric Food Chem; 2019 May; 67(21):5919-5921. PubMed ID: 31099567 [No Abstract] [Full Text] [Related]
2. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Oreb M; Dietz H; Farwick A; Boles E Bioengineered; 2012; 3(6):347-51. PubMed ID: 22892590 [TBL] [Abstract][Full Text] [Related]
3. A two-step bioprocessing strategy in pentonic acids production from lignocellulosic pre-hydrolysate. Zhou X; Huang L; Xu Y; Yu S Bioprocess Biosyst Eng; 2017 Nov; 40(11):1581-1587. PubMed ID: 28721445 [TBL] [Abstract][Full Text] [Related]
4. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697 [TBL] [Abstract][Full Text] [Related]
5. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
6. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
7. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Sanda T; Hasunuma T; Matsuda F; Kondo A Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512 [TBL] [Abstract][Full Text] [Related]
8. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850 [TBL] [Abstract][Full Text] [Related]
9. Fermentation of a pentose by yeasts. Wang PY; Shopsis C; Schneider H Biochem Biophys Res Commun; 1980 May; 94(1):248-54. PubMed ID: 6446306 [No Abstract] [Full Text] [Related]
10. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Li H; Wu M; Xu L; Hou J; Guo T; Bao X; Shen Y Microb Biotechnol; 2015 Mar; 8(2):266-74. PubMed ID: 25616171 [TBL] [Abstract][Full Text] [Related]
11. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae]. Wang C; Li H; Xu L; Shen Y; Hou J; Bao X Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022 [TBL] [Abstract][Full Text] [Related]
12. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779 [TBL] [Abstract][Full Text] [Related]
13. Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Almeida JR; Karhumaa K; Bengtsson O; Gorwa-Grauslund MF Bioresour Technol; 2009 Jul; 100(14):3674-7. PubMed ID: 19329297 [TBL] [Abstract][Full Text] [Related]
14. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL-pretreated lodgepole pine. Zhou H; Lan T; Dien BS; Hector RE; Zhu JY Biotechnol Prog; 2014; 30(5):1076-83. PubMed ID: 24930449 [TBL] [Abstract][Full Text] [Related]
15. Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae. Chin KL; H'ng PS; Wong LJ; Tey BT; Paridah MT Bioresour Technol; 2010 May; 101(9):3287-91. PubMed ID: 20056407 [TBL] [Abstract][Full Text] [Related]
16. Pervaporation of ethanol from lignocellulosic fermentation broth. Gaykawad SS; Zha Y; Punt PJ; van Groenestijn JW; van der Wielen LA; Straathof AJ Bioresour Technol; 2013 Feb; 129():469-76. PubMed ID: 23266848 [TBL] [Abstract][Full Text] [Related]
17. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions. Costa CE; Romaní A; Cunha JT; Johansson B; Domingues L Bioresour Technol; 2017 Mar; 227():24-34. PubMed ID: 28013133 [TBL] [Abstract][Full Text] [Related]
18. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant. Zhao M; Shi D; Lu X; Zong H; Zhuge B; Ji H Bioresour Technol; 2019 Feb; 273():634-640. PubMed ID: 30502643 [TBL] [Abstract][Full Text] [Related]
19. Metabolic Engineering for Improved Fermentation of L-Arabinose. Ye S; Kim JW; Kim SR J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A; Pereira F; Johansson B; Domingues L Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]