These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 31099773)

  • 1. [Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts].
    Spirov AV; Myasnikova EM
    Mol Biol (Mosk); 2019; 53(2):225-239. PubMed ID: 31099773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulatory networks in Drosophila early embryonic development as a model for the study of the temporal identity of neuroblasts.
    Myasnikova E; Spirov A
    Biosystems; 2020 Nov; 197():104192. PubMed ID: 32619531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pdm and Castor close successive temporal identity windows in the NB3-1 lineage.
    Tran KD; Doe CQ
    Development; 2008 Nov; 135(21):3491-9. PubMed ID: 18832394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS.
    Kambadur R; Koizumi K; Stivers C; Nagle J; Poole SJ; Odenwald WF
    Genes Dev; 1998 Jan; 12(2):246-60. PubMed ID: 9436984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pipsqueak-domain proteins Distal antenna and Distal antenna-related restrict Hunchback neuroblast expression and early-born neuronal identity.
    Kohwi M; Hiebert LS; Doe CQ
    Development; 2011 May; 138(9):1727-35. PubMed ID: 21429984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage.
    Grosskortenhaus R; Robinson KJ; Doe CQ
    Genes Dev; 2006 Sep; 20(18):2618-27. PubMed ID: 16980589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of early development in dipterans: reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae).
    Crombach A; García-Solache MA; Jaeger J
    Biosystems; 2014 Sep; 123():74-85. PubMed ID: 24911671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two Drosophila POU domain genes, related to oct-1 and oct-2, and the regulation of their expression patterns.
    Lloyd A; Sakonju S
    Mech Dev; 1991 Dec; 36(1-2):87-102. PubMed ID: 1685891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of temporal identity transitions in Drosophila neuroblasts.
    Grosskortenhaus R; Pearson BJ; Marusich A; Doe CQ
    Dev Cell; 2005 Feb; 8(2):193-202. PubMed ID: 15691761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny.
    Isshiki T; Pearson B; Holbrook S; Doe CQ
    Cell; 2001 Aug; 106(4):511-21. PubMed ID: 11525736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the functional overlap between two Drosophila POU homeo domain genes and the cell fate specification of a CNS neural precursor.
    Yeo SL; Lloyd A; Kozak K; Dinh A; Dick T; Yang X; Sakonju S; Chia W
    Genes Dev; 1995 May; 9(10):1223-36. PubMed ID: 7758947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of complex expression domains of the pdm-2 POU domain gene between Drosophila virilis and Drosophila melanogaster.
    Poole SJ
    Mech Dev; 1995 Jan; 49(1-2):107-16. PubMed ID: 7748782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hunchback temporal transcription factor establishes, but is not required to maintain, early-born neuronal identity.
    Hirono K; Kohwi M; Clark MQ; Heckscher ES; Doe CQ
    Neural Dev; 2017 Jan; 12(1):1. PubMed ID: 28137283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal cell fate specification by the molecular convergence of different spatio-temporal cues on a common initiator terminal selector gene.
    Stratmann J; Thor S
    PLoS Genet; 2017 Apr; 13(4):e1006729. PubMed ID: 28414802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redeployment of a conserved gene regulatory network during Aedes aegypti development.
    Suryamohan K; Hanson C; Andrews E; Sinha S; Scheel MD; Halfon MS
    Dev Biol; 2016 Aug; 416(2):402-13. PubMed ID: 27341759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of expression domains and effects of ectopic expression reveal gap gene-like properties of the linked pdm genes of Drosophila.
    Cockerill KA; Billin AN; Poole SJ
    Mech Dev; 1993 May; 41(2-3):139-53. PubMed ID: 8518192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A targeted genetic screen identifies crucial players in the specification of the Drosophila abdominal Capaergic neurons.
    Gabilondo H; Losada-Pérez M; del Saz D; Molina I; León Y; Canal I; Torroja L; Benito-Sipos J
    Mech Dev; 2011; 128(3-4):208-21. PubMed ID: 21236339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata.
    García-Solache M; Jaeger J; Akam M
    Dev Biol; 2010 Aug; 344(1):306-18. PubMed ID: 20433825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development.
    Kitajima A; Fuse N; Isshiki T; Matsuzaki F
    Dev Biol; 2010 Nov; 347(1):9-23. PubMed ID: 20599889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cis-regulatory analysis of the Drosophila pdm locus reveals a diversity of neural enhancers.
    Ross J; Kuzin A; Brody T; Odenwald WF
    BMC Genomics; 2015 Sep; 16(1):700. PubMed ID: 26377945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.