These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31099932)

  • 1. Weight-of-Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification.
    Burton GA; Hudson ML; Huntsman P; Carbonaro RF; Rader KJ; Waeterschoot H; Baken S; Garman E
    Environ Toxicol Chem; 2019 Sep; 38(9):1839-1849. PubMed ID: 31099932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method Development for Determining the Removal of Metals from the Water Column under Transformation/Dissolution Conditions for Chronic Hazard Classification.
    Huntsman P; Beaudoin R; Rader KJ; Carbonaro RF; Allen Burton G; Hudson M; Baken S; Garman E; Waeterschoot H
    Environ Toxicol Chem; 2019 Sep; 38(9):2032-2042. PubMed ID: 31099935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Fate of Metal Concentrates in Surface Water.
    Carbonaro RF; Farley KJ; Delbeke K; Baken S; Arbildua JJ; Rodriguez PH; Rader KJ
    Environ Toxicol Chem; 2019 Jun; 38(6):1256-1272. PubMed ID: 30903662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in metals classification under the United Nations globally harmonized system of classification and labeling.
    Skeaff J; Adams WJ; Rodriguez P; Brouwers T; Waeterschoot H
    Integr Environ Assess Manag; 2011 Oct; 7(4):559-76. PubMed ID: 21425236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies.
    Rader KJ; Carbonaro RF; van Hullebusch ED; Baken S; Delbeke K
    Environ Toxicol Chem; 2019 Jul; 38(7):1386-1399. PubMed ID: 30969442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation/dissolution characteristics of a nickel matte and nickel concentrates for acute and chronic hazard classification.
    Skeaff JM; Beaudoin R
    Integr Environ Assess Manag; 2015 Jan; 11(1):130-42. PubMed ID: 25103894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal bioavailability in ecological risk assessment of freshwater ecosystems: From science to environmental management.
    Väänänen K; Leppänen MT; Chen X; Akkanen J
    Ecotoxicol Environ Saf; 2018 Jan; 147():430-446. PubMed ID: 28888793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to the hazard classification of alloys based on transformation/dissolution.
    Skeaff JM; Hardy DJ; King P
    Integr Environ Assess Manag; 2008 Jan; 4(1):75-93. PubMed ID: 17944545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing aquatic hazard classification for metals, metal compounds and alloys in marine systems.
    Huntsman-Mapila P; Skeaff JM; Pawlak M; Beaudoin R
    Mar Pollut Bull; 2016 Aug; 109(1):550-557. PubMed ID: 27289283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of sorbent amendments for in situ remediation of metal-contaminated sediments.
    Kwon S; Thomas J; Reed BE; Levine L; Magar VS; Farrar D; Bridges TS; Ghosh U
    Environ Toxicol Chem; 2010 Sep; 29(9):1883-92. PubMed ID: 20821645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recommended updates to the USEPA Framework for Metals Risk Assessment: Aquatic ecosystems.
    Adams WJ; Garman ER
    Integr Environ Assess Manag; 2024 Jul; 20(4):924-951. PubMed ID: 37578034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels.
    Nedrich SM; Burton GA
    Environ Toxicol Chem; 2017 Sep; 36(9):2456-2464. PubMed ID: 28262986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Bopp SK; Kienzler A; Paini A; Pant R; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3450-3462. PubMed ID: 28618056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematode species at risk--a metric to assess pollution in soft sediments of freshwaters.
    Höss S; Claus E; Von der Ohe PC; Brinke M; Güde H; Heininger P; Traunspurger W
    Environ Int; 2011 Jul; 37(5):940-9. PubMed ID: 21482435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resuspension of sediment, a new approach for remediation of contaminated sediment.
    Pourabadehei M; Mulligan CN
    Environ Pollut; 2016 Jun; 213():63-75. PubMed ID: 26874876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting long-term temporal trends in sediment-bound trace metals from urbanised catchments.
    Sharley DJ; Sharp SM; Bourgues S; Pettigrove VJ
    Environ Pollut; 2016 Dec; 219():705-713. PubMed ID: 27396614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved closed test setup for biodegradation testing of slightly volatile substances in water-sediment systems (OECD 308).
    Shrestha P; Hughes CB; Camenzuli L; Lyon D; Meisterjahn B; Hennecke T; Griffiths M; Hennecke D
    Chemosphere; 2023 May; 324():138294. PubMed ID: 36878367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical load analysis in hazard assessment of metals using a Unit World Model.
    Gandhi N; Bhavsar SP; Diamond ML
    Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.