These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 31099932)
21. Temporal changes and depth wise variations in pit pond hydrochemistry contaminated with industrial effluents with special emphasis on metal distribution in water-sediment system. Gupta S; Nayek S; Saha RN J Hazard Mater; 2010 Nov; 183(1-3):125-31. PubMed ID: 20674171 [TBL] [Abstract][Full Text] [Related]
22. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Donnachie RL; Johnson AC; Moeckel C; Pereira MG; Sumpter JP Environ Pollut; 2014 Nov; 194():17-23. PubMed ID: 25084241 [TBL] [Abstract][Full Text] [Related]
23. Experiences with the OECD 308 transformation test: a human pharmaceutical perspective. Ericson JF; Smith RM; Roberts G; Hannah B; Hoeger B; Ryan J Integr Environ Assess Manag; 2014 Jan; 10(1):114-24. PubMed ID: 23794155 [TBL] [Abstract][Full Text] [Related]
24. An overview of toxicant identification in sediments and dredged materials. Ho KT; Burgess RM; Pelletier MC; Serbst JR; Ryba SA; Cantwell MG; Kuhn A; Raczelowski P Mar Pollut Bull; 2002 Apr; 44(4):286-93. PubMed ID: 12139318 [TBL] [Abstract][Full Text] [Related]
25. Sediment Toxicity Tests: A Critical Review of Their use in Environmental Regulations. Leppanen MT; Sourisseau S; Burgess RM; Simpson SL; Sibley P; Jonker MTO Environ Toxicol Chem; 2024 Aug; 43(8):1697-1716. PubMed ID: 38597781 [TBL] [Abstract][Full Text] [Related]
26. The Effects of Sediment Classification Pattern on a Water Column Organism, Ceriodaphnia dubia. Lira VS; Watanabe CH; Carvalho MM; Rosa AH; Fracácio R Bull Environ Contam Toxicol; 2018 Jun; 100(6):778-785. PubMed ID: 29651544 [TBL] [Abstract][Full Text] [Related]
27. Assessment of the hazard posed by metal forms in water and sediments. Wojtkowska M; Bogacki J; Witeska A Sci Total Environ; 2016 May; 551-552():387-92. PubMed ID: 26891009 [TBL] [Abstract][Full Text] [Related]
28. Is fish embryo test (FET) according to OECD 236 sensible enough for delivering quality data for effluent risk assessment? Stelzer JAA; Rosin CK; Bauer LH; Hartmann M; Pulgati FH; Arenzon A Environ Toxicol Chem; 2018 Nov; 37(11):2925-2932. PubMed ID: 29926976 [TBL] [Abstract][Full Text] [Related]
29. Development of a bioavailability-based risk assessment approach for nickel in freshwater sediments. Schlekat CE; Garman ER; Vangheluwe ML; Burton GA Integr Environ Assess Manag; 2016 Oct; 12(4):735-46. PubMed ID: 27640416 [TBL] [Abstract][Full Text] [Related]
30. Physical and ecological controls on freshwater floc trace metal dynamics. Plach JM; Elliott AV; Droppo IG; Warren LA Environ Sci Technol; 2011 Mar; 45(6):2157-64. PubMed ID: 21322631 [TBL] [Abstract][Full Text] [Related]
31. Using sediment cores to establish targets for the remediation of aquatic environments. Lintern A; Anderson M; Leahy P; Deletic A; McCarthy D Water Sci Technol; 2016; 73(3):628-35. PubMed ID: 26877046 [TBL] [Abstract][Full Text] [Related]
32. Ecological risk assessment of boreal sediments affected by metal mining: Metal geochemistry, seasonality, and comparison of several risk assessment methods. Väänänen K; Kauppila T; Mäkinen J; Leppänen MT; Lyytikäinen M; Akkanen J Integr Environ Assess Manag; 2016 Oct; 12(4):759-71. PubMed ID: 26695003 [TBL] [Abstract][Full Text] [Related]
33. A framework for ecological risk assessment of metal mixtures in aquatic systems. Nys C; Van Regenmortel T; Janssen CR; Oorts K; Smolders E; De Schamphelaere KAC Environ Toxicol Chem; 2018 Mar; 37(3):623-642. PubMed ID: 29135043 [TBL] [Abstract][Full Text] [Related]
34. Deriving persistence indicators from regulatory water-sediment studies – opportunities and limitations in OECD 308 data. Honti M; Fenner K Environ Sci Technol; 2015 May; 49(10):5879-86. PubMed ID: 25958980 [TBL] [Abstract][Full Text] [Related]
35. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply. Cardoso-Silva S; Da Silva DC; Lage F; de Paiva TC; Moschini-Carlos V; Rosa AH; Pompêo M Environ Monit Assess; 2016 May; 188(5):310. PubMed ID: 27117444 [TBL] [Abstract][Full Text] [Related]
36. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea). Sokolowski A; Wolowicz M; Hummel H Mar Pollut Bull; 2001 Oct; 42(10):967-80. PubMed ID: 11693652 [TBL] [Abstract][Full Text] [Related]
37. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Schaller J; Brackhage C; Mkandawire M; Dudel EG Sci Total Environ; 2011 Nov; 409(23):4891-8. PubMed ID: 21907393 [TBL] [Abstract][Full Text] [Related]
38. Baseline concentrations of ten metals in the freshwater sediments of a watershed in Taiwan. Hseu ZY; Chen ZS; Tsai CC; Tsui CC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Oct; 37(9):1633-47. PubMed ID: 12403013 [TBL] [Abstract][Full Text] [Related]
39. Variability of parameters measured during the resuspension of sediments with a particle entrainment simulator. Cantwell MG; Burgess RM Chemosphere; 2004 Jul; 56(1):51-8. PubMed ID: 15109879 [TBL] [Abstract][Full Text] [Related]
40. Simulation Studies to Explore Biodegradation in Water-Sediment Systems: From OECD 308 to OECD 309. Shrestha P; Junker T; Fenner K; Hahn S; Honti M; Bakkour R; Diaz C; Hennecke D Environ Sci Technol; 2016 Jul; 50(13):6856-64. PubMed ID: 27337495 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]