BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 31100357)

  • 1. Deep Learning Deepens the Analysis of Alternative Splicing.
    Zou X; Gao X; Chen W
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):219-221. PubMed ID: 31100357
    [No Abstract]   [Full Text] [Related]  

  • 2. Deep Splicing Code: Classifying Alternative Splicing Events Using Deep Learning.
    Louadi Z; Oubounyt M; Tayara H; Chong KT
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31374967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Splicing from Primary Sequence with Deep Learning.
    Jaganathan K; Kyriazopoulou Panagiotopoulou S; McRae JF; Darbandi SF; Knowles D; Li YI; Kosmicki JA; Arbelaez J; Cui W; Schwartz GB; Chow ED; Kanterakis E; Gao H; Kia A; Batzoglou S; Sanders SJ; Farh KK
    Cell; 2019 Jan; 176(3):535-548.e24. PubMed ID: 30661751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin and Genomic determinants of alternative splicing.
    Wang K; Cao K; Hannenhalli S
    ACM BCB; 2015 Sep; 2015():345-354. PubMed ID: 28825057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning of the back-splicing code for circular RNA formation.
    Wang J; Wang L
    Bioinformatics; 2019 Dec; 35(24):5235-5242. PubMed ID: 31077303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of SRSF10-regulated alternative splicing by deep sequencing of chicken transcriptome.
    Zhou X; Wu W; Wei N; Cheng Y; Xie Z; Feng Y
    Genom Data; 2014 Dec; 2():20-3. PubMed ID: 26484059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum.
    Xie BB; Li D; Shi WL; Qin QL; Wang XW; Rong JC; Sun CY; Huang F; Zhang XY; Dong XW; Chen XL; Zhou BC; Zhang YZ; Song XY
    BMC Genomics; 2015 Feb; 16(1):54. PubMed ID: 25652134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing.
    Pan Q; Shai O; Lee LJ; Frey BJ; Blencowe BJ
    Nat Genet; 2008 Dec; 40(12):1413-5. PubMed ID: 18978789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins.
    Hao Y; Colak R; Teyra J; Corbi-Verge C; Ignatchenko A; Hahne H; Wilhelm M; Kuster B; Braun P; Kaida D; Kislinger T; Kim PM
    Cell Rep; 2015 Jul; 12(2):183-9. PubMed ID: 26146086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing: global insights.
    Hallegger M; Llorian M; Smith CW
    FEBS J; 2010 Feb; 277(4):856-66. PubMed ID: 20082635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing alternative splicing data of splice junction arrays from Parkinson patients' leukocytes before and after deep brain stimulation as compared with control donors.
    Soreq L; Salomonis N; Israel Z; Bergman H; Soreq H
    Genom Data; 2015 Sep; 5():340-3. PubMed ID: 26484282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of Alternative Splicing in Eudicots.
    Ling Z; Brockmöller T; Baldwin IT; Xu S
    Front Plant Sci; 2019; 10():707. PubMed ID: 31244865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer.
    Liu Q; Chen C; Shen E; Zhao F; Sun Z; Wu J
    Genomics; 2012 Mar; 99(3):178-82. PubMed ID: 22226708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.
    Zhang W; Zhu X; Fu Y; Tsuji J; Weng Z
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):464. PubMed ID: 29219070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning the sequence determinants of alternative splicing from millions of random sequences.
    Rosenberg AB; Patwardhan RP; Shendure J; Seelig G
    Cell; 2015 Oct; 163(3):698-711. PubMed ID: 26496609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepDSSR: Deep Learning Structure for Human Donor Splice Sites Recognition.
    Alam T; Islam MT; Househ M; Bouzerdoum A; Kawsar FA
    Stud Health Technol Inform; 2019 Jul; 262():236-239. PubMed ID: 31349311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DDX1 regulates alternative splicing and insulin secretion in pancreatic β cells.
    Zhong W; Li Z; Zhou M; Xu T; Wang Y
    Biochem Biophys Res Commun; 2018 Jun; 500(3):751-757. PubMed ID: 29679569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The determinants of alternative RNA splicing in human cells.
    Ramanouskaya TV; Grinev VV
    Mol Genet Genomics; 2017 Dec; 292(6):1175-1195. PubMed ID: 28707092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.
    Shen S; Park JW; Lu ZX; Lin L; Henry MD; Wu YN; Zhou Q; Xing Y
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):E5593-601. PubMed ID: 25480548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurofibromatosis type 1 alternative splicing is a key regulator of Ras/ERK signaling and learning behaviors in mice.
    Nguyen HT; Hinman MN; Guo X; Sharma A; Arakawa H; Luo G; Lou H
    Hum Mol Genet; 2017 Oct; 26(19):3797-3807. PubMed ID: 28934393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.