These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31100394)
1. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. Yang Z; Yin J; Wang Y; Wang J; Xia B; Li T; Yang X; Hu S; Ji C; Guo S Int J Biol Macromol; 2019 Aug; 134():759-769. PubMed ID: 31100394 [TBL] [Abstract][Full Text] [Related]
2. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. Yang Z; Liu G; Wang Y; Yin J; Wang J; Xia B; Li T; Yang X; Hou P; Hu S; Song W; Guo S J Agric Food Chem; 2019 May; 67(20):5782-5791. PubMed ID: 31055921 [TBL] [Abstract][Full Text] [Related]
3. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Yin J; Wang J; Li F; Yang Z; Yang X; Sun W; Xia B; Li T; Song W; Guo S Food Funct; 2019 Aug; 10(8):5124-5139. PubMed ID: 31364648 [TBL] [Abstract][Full Text] [Related]
4. Rosmarinic Acid Exhibits a Lipid-Lowering Effect by Modulating the Expression of Reverse Cholesterol Transporters and Lipid Metabolism in High-Fat Diet-Fed Mice. Nyandwi JB; Ko YS; Jin H; Yun SP; Park SW; Kim HJ Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680102 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the hypolipidemic effects and mechanisms of action of Liu T; Wang X; Wang YM; Sui FR; Zhang XY; Liu HD; Ma DY; Liu XX; Guo SD Food Funct; 2024 Jun; 15(11):5955-5971. PubMed ID: 38738998 [TBL] [Abstract][Full Text] [Related]
6. Ezetimibe promotes CYP7A1 and modulates PPARs as a compensatory mechanism in LDL receptor-deficient hamsters. Xia B; Lin P; Ji Y; Yin J; Wang J; Yang X; Li T; Yang Z; Li F; Guo S Lipids Health Dis; 2020 Feb; 19(1):24. PubMed ID: 32035489 [TBL] [Abstract][Full Text] [Related]
7. Zhang Y; Liu T; Qu ZJ; Wang X; Song WG; Guo SD Cardiovasc Ther; 2024; 2024():8649365. PubMed ID: 38375358 [TBL] [Abstract][Full Text] [Related]
8. Polyphenol-rich black chokeberry (Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells. Kim B; Park Y; Wegner CJ; Bolling BW; Lee J J Nutr Biochem; 2013 Sep; 24(9):1564-70. PubMed ID: 23517916 [TBL] [Abstract][Full Text] [Related]
9. Propofol up-regulates expression of ABCA1, ABCG1, and SR-B1 through the PPARγ/LXRα signaling pathway in THP-1 macrophage-derived foam cells. Ma X; Li SF; Qin ZS; Ye J; Zhao ZL; Fang HH; Yao ZW; Gu MN; Hu YW Cardiovasc Pathol; 2015; 24(4):230-5. PubMed ID: 25600616 [TBL] [Abstract][Full Text] [Related]
10. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice. Zhu RG; Sun YD; Hou YT; Fan JG; Chen G; Li TP Chem Biol Interact; 2017 Jun; 272():153-159. PubMed ID: 28549616 [TBL] [Abstract][Full Text] [Related]
11. Effects of K-877, a novel selective PPARα modulator, on small intestine contribute to the amelioration of hyperlipidemia in low-density lipoprotein receptor knockout mice. Takei K; Nakagawa Y; Wang Y; Han SI; Satoh A; Sekiya M; Matsuzaka T; Shimano H J Pharmacol Sci; 2017 Apr; 133(4):214-222. PubMed ID: 28366492 [TBL] [Abstract][Full Text] [Related]
12. Effects of Tanshinone IIA on the modulation of miR‑33a and the SREBP‑2/Pcsk9 signaling pathway in hyperlipidemic rats. Jia L; Song N; Yang G; Ma Y; Li X; Lu R; Cao H; Zhang N; Zhu M; Wang J; Leng X; Cao Y; Du Y; Xu Y Mol Med Rep; 2016 Jun; 13(6):4627-35. PubMed ID: 27082100 [TBL] [Abstract][Full Text] [Related]
13. Nucleolin protects macrophages from oxLDL-induced foam cell formation through up-regulating ABCA1 expression. Li Y; Jiang B; Liang P; Tong Z; Liu M; Lv Q; Liu Y; Liu X; Tang Y; Xiao X Biochem Biophys Res Commun; 2017 Apr; 486(2):364-371. PubMed ID: 28315324 [TBL] [Abstract][Full Text] [Related]
14. Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice: implications for therapeutic targeting. Quinet EM; Savio DA; Halpern AR; Chen L; Schuster GU; Gustafsson JA; Basso MD; Nambi P Mol Pharmacol; 2006 Oct; 70(4):1340-9. PubMed ID: 16825483 [TBL] [Abstract][Full Text] [Related]
15. Recombinant Humanized IgG1 Antibody Promotes Reverse Cholesterol Transport through FcRn-ERK1/2-PPARα Pathway in Hepatocytes. Li Z; Zhang Q; Liu X; Zhao M Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498935 [TBL] [Abstract][Full Text] [Related]
16. Peroxisome Proliferator-activated receptor γ activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. Duan Y; Chen Y; Hu W; Li X; Yang X; Zhou X; Yin Z; Kong D; Yao Z; Hajjar DP; Liu L; Liu Q; Han J J Biol Chem; 2012 Jul; 287(28):23667-77. PubMed ID: 22593575 [TBL] [Abstract][Full Text] [Related]
17. Foam cells in atherosclerosis. Yu XH; Fu YC; Zhang DW; Yin K; Tang CK Clin Chim Acta; 2013 Sep; 424():245-52. PubMed ID: 23782937 [TBL] [Abstract][Full Text] [Related]
18. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss. Kuo KK; Wu BN; Liu CP; Yang TY; Kao LP; Wu JR; Lai WT; Chen IJ J Lipid Res; 2015 Nov; 56(11):2070-84. PubMed ID: 26351364 [TBL] [Abstract][Full Text] [Related]
19. [Study on anti-hyperlipidemia effect of Linderae Radix via regulating reverse cholesterol transport]. Liu HF; Huang JB; Huang MC; Jiang T; Lyu GY; Li B; Qiu XY; Cheng B; Lou ZH Zhongguo Zhong Yao Za Zhi; 2021 Apr; 46(7):1795-1802. PubMed ID: 33982484 [TBL] [Abstract][Full Text] [Related]
20. Cooked rice prevents hyperlipidemia in hamsters fed a high-fat/cholesterol diet by the regulation of the expression of hepatic genes involved in lipid metabolism. Choi WH; Gwon SY; Ahn J; Jung CH; Ha TY Nutr Res; 2013 Jul; 33(7):572-9. PubMed ID: 23827132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]