These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 31100590)
41. Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. Wu Z; Gao G; Wang Y Ecotoxicol Environ Saf; 2019 Sep; 180():705-714. PubMed ID: 31151067 [TBL] [Abstract][Full Text] [Related]
42. Metagenomic analysis of microbial community and function involved in cd-contaminated soil. Feng G; Xie T; Wang X; Bai J; Tang L; Zhao H; Wei W; Wang M; Zhao Y BMC Microbiol; 2018 Feb; 18(1):11. PubMed ID: 29439665 [TBL] [Abstract][Full Text] [Related]
43. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
44. Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities. García-Gonzalo P; Del Real AEP; Lobo MC; Pérez-Sanz A Environ Sci Pollut Res Int; 2017 Nov; 24(33):25713-25724. PubMed ID: 27151239 [TBL] [Abstract][Full Text] [Related]
45. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Saif S; Khan MS Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936 [TBL] [Abstract][Full Text] [Related]
46. Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Hemmat-Jou MH; Safari-Sinegani AA; Mirzaie-Asl A; Tahmourespour A Ecotoxicology; 2018 Nov; 27(9):1281-1291. PubMed ID: 30242595 [TBL] [Abstract][Full Text] [Related]
47. Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes. Singh A; Varma A; Prasad R; Porwal S Environ Res; 2022 Dec; 215(Pt 2):114338. PubMed ID: 36116499 [TBL] [Abstract][Full Text] [Related]
48. Understanding variations in soil properties and microbial communities in bamboo plantation soils along a chromium pollution gradient. Zhang X; Gai X; Zhong Z; Bian F; Yang C; Li Y; Wen X Ecotoxicol Environ Saf; 2021 Oct; 222():112507. PubMed ID: 34265530 [TBL] [Abstract][Full Text] [Related]
49. Comparison of microbial taxonomic and functional shift pattern along contamination gradient. Ren Y; Niu J; Huang W; Peng D; Xiao Y; Zhang X; Liang Y; Liu X; Yin H BMC Microbiol; 2016 Jun; 16(1):110. PubMed ID: 27301322 [TBL] [Abstract][Full Text] [Related]
50. Culture-dependent diversity of bacteria from Laohugou glacier, Qilian Mts., China and their resistance against metals. Ali B; Sajjad W; Ghimire PS; Shengyun C; Minghui W; Kang S J Basic Microbiol; 2019 Nov; 59(11):1065-1081. PubMed ID: 31556143 [TBL] [Abstract][Full Text] [Related]
51. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Gremion F; Chatzinotas A; Harms H Environ Microbiol; 2003 Oct; 5(10):896-907. PubMed ID: 14510843 [TBL] [Abstract][Full Text] [Related]
52. New insights into the impact of nZVI on soil microbial biodiversity and functionality. Fajardo C; García-Cantalejo J; Botías P; Costa G; Nande M; Martin M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(3):157-167. PubMed ID: 30588856 [TBL] [Abstract][Full Text] [Related]
53. Shift of bacterial communities in heavy metal-contaminated agricultural land during a remediation process. Huang CC; Liang CM; Yang TI; Chen JL; Wang WK PLoS One; 2021; 16(7):e0255137. PubMed ID: 34297781 [TBL] [Abstract][Full Text] [Related]
54. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
55. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Zhou H; Zhang D; Jiang Z; Sun P; Xiao H; Yuxin W; Chen J Sci Total Environ; 2019 Feb; 651(Pt 2):2281-2291. PubMed ID: 30326458 [TBL] [Abstract][Full Text] [Related]
56. Insights on the assembly processes and drivers of soil microbial communities in different depth layers in an abandoned polymetallic mining district. Yin Y; Wang X; Hu Y; Li F; Cheng H J Hazard Mater; 2023 Sep; 458():132043. PubMed ID: 37453349 [TBL] [Abstract][Full Text] [Related]
57. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Viti C; Pace A; Giovannetti L Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455 [TBL] [Abstract][Full Text] [Related]
58. Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. de Araujo AS; Bezerra WM; Dos Santos VM; Rocha SM; Carvalho ND; de Lyra MD; Figueiredo MD; de Almeida Lopes ÂC; Melo VM Antonie Van Leeuwenhoek; 2017 Apr; 110(4):457-469. PubMed ID: 28062969 [TBL] [Abstract][Full Text] [Related]
59. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI). Lara P; Morett E; Juárez K Environ Sci Pollut Res Int; 2017 Nov; 24(33):25513-25521. PubMed ID: 27525740 [TBL] [Abstract][Full Text] [Related]
60. Cr(VI) resistance and removal by indigenous bacteria isolated from chromium-contaminated soil. Long D; Tang X; Cai K; Chen G; Shen C; Shi J; Chen L; Chen Y J Microbiol Biotechnol; 2013 Aug; 23(8):1123-32. PubMed ID: 23727810 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]