These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31100647)

  • 1. Genomics, Biology and Phylogeny Aurantiochytrium acetophilum sp. nov. (Thraustrochytriaceae), Including First Evidence of Sexual Reproduction.
    Ganuza E; Yang S; Amezquita M; Giraldo-Silva A; Andersen RA
    Protist; 2019 Apr; 170(2):209-232. PubMed ID: 31100647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Primer Set to Amplify the Mitochondrial Cytochrome C Oxidase Subunit I (COI) Gene in the DHA-Rich Microalgae, the Genus Aurantiochytrium.
    Nishitani G; Yoshida M
    Microbes Environ; 2018 Jul; 33(2):227-229. PubMed ID: 29863058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-canonical Δ9-desaturase synthesizing palmitoleic acid identified in the thraustochytrid Aurantiochytrium sp. T66.
    Rau EM; Aasen IM; Ertesvåg H
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5931-5941. PubMed ID: 34292356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Deep-branching Stramenopile, Platysulcus tardus gen. nov., sp. nov.
    Shiratori T; Nakayama T; Ishida K
    Protist; 2015 Jul; 166(3):337-48. PubMed ID: 26070192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources.
    Li J; Liu R; Chang G; Li X; Chang M; Liu Y; Jin Q; Wang X
    Bioresour Technol; 2015 Feb; 177():51-7. PubMed ID: 25479393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Profiling and Gene Disruption Revealed that Two Genes Related to PUFAs/DHA Biosynthesis May be Essential for Cell Growth of Aurantiochytrium sp.
    Liang Y; Liu Y; Tang J; Ma J; Cheng JJ; Daroch M
    Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30200435
    [No Abstract]   [Full Text] [Related]  

  • 7. Revealing holistic metabolic responses associated with lipid and docosahexaenoic acid (DHA) production in Aurantiochytrium sp. SW1.
    Prabhakaran P; Raethong N; Thananusak R; Nazir MYM; Sapkaew C; Soommat P; Kingkaw A; Hamid AA; Vongsangnak W; Song Y
    Biochim Biophys Acta Mol Cell Biol Lipids; 2023 May; 1868(5):159306. PubMed ID: 36907245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of docosahexaenoic acid from spruce sugars using Aurantiochytrium limacinum.
    Olsen PM; Kósa G; Klüver M; Kohler A; Shapaval V; Horn SJ
    Bioresour Technol; 2023 May; 376():128827. PubMed ID: 36878374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101.
    Hong WK; Rairakhwada D; Seo PS; Park SY; Hur BK; Kim CH; Seo JW
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1468-80. PubMed ID: 21424706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lignocellulosic hydrolysate-tolerant Aurantiochytrium sp. mutant strain for docosahexaenoic acid production.
    Qi F; Zhang M; Chen Y; Jiang X; Lin J; Cao X; Huang J
    Bioresour Technol; 2017 Mar; 227():221-226. PubMed ID: 28038399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid.
    Hong WK; Kim CH; Rairakhwada D; Kim S; Hur BK; Kondo A; Seo JW
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):129-33. PubMed ID: 21959581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in
    Watanabe T; Sakiyama R; Iimi Y; Sekine S; Abe E; Nomura KH; Nomura K; Ishibashi Y; Okino N; Hayashi M; Ito M
    J Lipid Res; 2017 Dec; 58(12):2334-2347. PubMed ID: 29025869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase.
    Cheng YR; Sun ZJ; Cui GZ; Song X; Cui Q
    Enzyme Microb Technol; 2016 Nov; 93-94():182-190. PubMed ID: 27702480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis reveals unexpected genome features of newly isolated Thraustochytrids strains: on ecological function and PUFAs biosynthesis.
    Song Z; Stajich JE; Xie Y; Liu X; He Y; Chen J; Hicks GR; Wang G
    BMC Genomics; 2018 Jul; 19(1):541. PubMed ID: 30016947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Squalene Production by Constitutive Expression of the 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Aurantiochytrium sp. 18W-13a.
    Yang T; Juntila DJ; Fujihara N; Inada T; Yoneda K; Suzuki I
    Mar Biotechnol (NY); 2022 Aug; 24(4):733-743. PubMed ID: 35841466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrophrys columna gen. nov., sp. nov: A member of the family Amphifilidae.
    Takahashi Y; Yoshida M; Inouye I; Watanabe MM
    Eur J Protistol; 2016 Oct; 56():41-50. PubMed ID: 27468745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production.
    Nakazawa A; Matsuura H; Kose R; Kato S; Honda D; Inouye I; Kaya K; Watanabe MM
    Bioresour Technol; 2012 Apr; 109():287-91. PubMed ID: 22023965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Production of Astaxanthin without Decrease of DHA Content in Aurantiochytrium limacinum by Overexpressing Multifunctional Carotenoid Synthase Gene.
    Kubo Y; Shiroi M; Higashine T; Mori Y; Morimoto D; Nakagawa S; Sawayama S
    Appl Biochem Biotechnol; 2021 Jan; 193(1):52-64. PubMed ID: 32808245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of High Carotenoid-producing Aurantiochytrium sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information.
    Watanabe K; Arafiles KHV; Higashi R; Okamura Y; Tajima T; Matsumura Y; Nakashimada Y; Matsuyama K; Aki T
    J Oleo Sci; 2018 May; 67(5):571-578. PubMed ID: 29628484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Oil Hyper-Accumulator Mutant Highlights Peroxisomal ATP Import as a Regulatory Step for Fatty Acid Metabolism in
    Deragon E; Schuler M; Aiese Cigliano R; Dellero Y; Si Larbi G; Falconet D; Jouhet J; Maréchal E; Michaud M; Amato A; Rébeillé F
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.