These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31100662)

  • 1. An overview of biomass thermochemical conversion technologies in Malaysia.
    Chan YH; Cheah KW; How BS; Loy ACM; Shahbaz M; Singh HKG; Yusuf NR; Shuhaili AFA; Yusup S; Ghani WAWAK; Rambli J; Kansha Y; Lam HL; Hong BH; Ngan SL
    Sci Total Environ; 2019 Aug; 680():105-123. PubMed ID: 31100662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes.
    Ubando AT; Rivera DRT; Chen WH; Culaba AB
    Bioresour Technol; 2019 Nov; 291():121837. PubMed ID: 31353166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermochemical conversion of microalgal biomass into biofuels: a review.
    Chen WH; Lin BJ; Huang MY; Chang JS
    Bioresour Technol; 2015 May; 184():314-327. PubMed ID: 25479688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in thermochemical co-processing of biomass and sludge for sustainable energy, value-added products and circular economy.
    Chan YH; Lock SSM; Chin BLF; Wong MK; Loy ACM; Foong SY; Yiin CL; Lam SS
    Bioresour Technol; 2023 Jul; 380():129061. PubMed ID: 37075852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in thermochemical methods for the conversion of algal biomass to energy.
    Das P; V P C; Mathimani T; Pugazhendhi A
    Sci Total Environ; 2021 Apr; 766():144608. PubMed ID: 33421791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals.
    Pang S
    Biotechnol Adv; 2019; 37(4):589-597. PubMed ID: 30447327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass for thermochemical conversion: targets and challenges.
    Tanger P; Field JL; Jahn CE; Defoort MW; Leach JE
    Front Plant Sci; 2013; 4():218. PubMed ID: 23847629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COVID-19 and industrial waste mitigation via thermochemical technologies towards a circular economy: A state-of-the-art review.
    Felix CB; Ubando AT; Chen WH; Goodarzi V; Ashokkumar V
    J Hazard Mater; 2022 Feb; 423(Pt B):127215. PubMed ID: 34844348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in thermochemical conversion of aquatic weeds in shellfish aquaculture for biofuel generation: Technical and economic perspectives.
    Azwar E; Wan Mahari WA; Rastegari H; Tabatabaei M; Peng W; Tsang YF; Park YK; Chen WH; Lam SS
    Bioresour Technol; 2022 Jan; 344(Pt A):126202. PubMed ID: 34710598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks.
    Yang RX; Jan K; Chen CT; Chen WT; Wu KC
    ChemSusChem; 2022 Jun; 15(11):e202200171. PubMed ID: 35349769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developments in waste tyre thermochemical conversion processes: gasification, pyrolysis and liquefaction.
    Nkosi N; Muzenda E; Gorimbo J; Belaid M
    RSC Adv; 2021 Mar; 11(20):11844-11871. PubMed ID: 35423733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy.
    Das P; V P C; Mathimani T; Pugazhendhi A
    Sci Total Environ; 2021 Apr; 766():144213. PubMed ID: 33418252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable processing of algal biomass for a comprehensive biorefinery.
    Javed MU; Mukhtar H; Hayat MT; Rashid U; Mumtaz MW; Ngamcharussrivichai C
    J Biotechnol; 2022 Jun; 352():47-58. PubMed ID: 35613647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food waste-to-energy conversion technologies: current status and future directions.
    Pham TP; Kaushik R; Parshetti GK; Mahmood R; Balasubramanian R
    Waste Manag; 2015 Apr; 38():399-408. PubMed ID: 25555663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.
    Gerber Van Doren L; Posmanik R; Bicalho FA; Tester JW; Sills DL
    Bioresour Technol; 2017 Feb; 225():67-74. PubMed ID: 27883955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palm oil and its wastes as bioenergy sources: a comprehensive review.
    Mahlia TMI; Ismail N; Hossain N; Silitonga AS; Shamsuddin AH
    Environ Sci Pollut Res Int; 2019 May; 26(15):14849-14866. PubMed ID: 30937750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for municipal sludge recycling by thermochemical conversion towards sustainability.
    Sun L; Li M; Liu B; Li R; Deng H; Zhu X; Zhu X; Tsang DCW
    Bioresour Technol; 2024 Feb; 394():130254. PubMed ID: 38151207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biorenewable hydrogen production through biomass gasification: A review and future prospects.
    Cao L; Yu IKM; Xiong X; Tsang DCW; Zhang S; Clark JH; Hu C; Ng YH; Shang J; Ok YS
    Environ Res; 2020 Jul; 186():109547. PubMed ID: 32335432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives.
    Song C; Zhang C; Zhang S; Lin H; Kim Y; Ramakrishnan M; Du Y; Zhang Y; Zheng H; Barceló D
    Sci Total Environ; 2020 Dec; 749():141972. PubMed ID: 33370925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar production and its environmental applications: Recent developments and machine learning insights.
    Supraja KV; Kachroo H; Viswanathan G; Verma VK; Behera B; Doddapaneni TRKC; Kaushal P; Ahammad SZ; Singh V; Awasthi MK; Jain R
    Bioresour Technol; 2023 Nov; 387():129634. PubMed ID: 37573981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.