These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31100662)

  • 21. The potential impacts of biomass feedstock production on water resource availability.
    Stone KC; Hunt PG; Cantrell KB; Ro KS
    Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermochemical conversion of waste tyres-a review.
    Labaki M; Jeguirim M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9962-9992. PubMed ID: 27796970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.
    Neumann J; Meyer J; Ouadi M; Apfelbacher A; Binder S; Hornung A
    Waste Manag; 2016 Jan; 47(Pt A):141-8. PubMed ID: 26190827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges.
    Rashidi NA; Chai YH; Yusup S
    Bioenergy Res; 2022; 15(3):1371-1386. PubMed ID: 35079317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pilot-scale co-processing of lignocellulosic biomass, algae, shellfish waste via thermochemical approach: Recent progress and future directions.
    Yek PNY; Wan Mahari WA; Kong SH; Foong SY; Peng W; Ting H; Liew RK; Xia C; Sonne C; Tabatabaei M; Almomani F; Aghbashlo M; Lam SS
    Bioresour Technol; 2022 Mar; 347():126687. PubMed ID: 35007740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review.
    Babu S; Singh Rathore S; Singh R; Kumar S; Singh VK; Yadav SK; Yadav V; Raj R; Yadav D; Shekhawat K; Ali Wani O
    Bioresour Technol; 2022 Sep; 360():127566. PubMed ID: 35788385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The current status and challenges of biomass biorefineries in Africa: A critical review and future perspectives for bioeconomy development.
    Fertahi S; Elalami D; Tayibi S; Taarji N; Lyamlouli K; Bargaz A; Oukarroum A; Zeroual Y; El Bouhssini M; Barakat A
    Sci Total Environ; 2023 Apr; 870():162001. PubMed ID: 36739012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.
    Lumley NP; Ramey DF; Prieto AL; Braun RJ; Cath TY; Porter JM
    Bioresour Technol; 2014 Jun; 161():385-94. PubMed ID: 24727699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of poultry wastes into energy feedstocks.
    Kantarli IC; Kabadayi A; Ucar S; Yanik J
    Waste Manag; 2016 Oct; 56():530-9. PubMed ID: 27440220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.
    Shen Y; Jarboe L; Brown R; Wen Z
    Biotechnol Adv; 2015 Dec; 33(8):1799-813. PubMed ID: 26492814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of thermal-chemical conversion of lignocellulosic biomass in China.
    Ma L; Wang T; Liu Q; Zhang X; Ma W; Zhang Q
    Biotechnol Adv; 2012; 30(4):859-73. PubMed ID: 22306330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.
    Samolada MC; Zabaniotou AA
    Waste Manag; 2014 Feb; 34(2):411-20. PubMed ID: 24290971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on technological options of waste to energy for effective management of municipal solid waste.
    Kumar A; Samadder SR
    Waste Manag; 2017 Nov; 69():407-422. PubMed ID: 28886975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.
    Corton J; Donnison IS; Patel M; Bühle L; Hodgson E; Wachendorf M; Bridgwater A; Allison G; Fraser MD
    Appl Energy; 2016 Sep; 177():852-862. PubMed ID: 27818570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis.
    Vardon DR; Sharma BK; Blazina GV; Rajagopalan K; Strathmann TJ
    Bioresour Technol; 2012 Apr; 109():178-87. PubMed ID: 22285293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing Waste-to-Energy technologies by applying energy system analysis.
    Münster M; Lund H
    Waste Manag; 2010 Jul; 30(7):1251-63. PubMed ID: 19700298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategy and design of Innovation Policy Road Mapping for a waste biorefinery.
    Rama Mohan S
    Bioresour Technol; 2016 Sep; 215():76-83. PubMed ID: 27039350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.
    Khoo HH; Koh CY; Shaik MS; Sharratt PN
    Bioresour Technol; 2013 Sep; 143():298-307. PubMed ID: 23810951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Algal biomass conversion to bioethanol - a step-by-step assessment.
    Harun R; Yip JW; Thiruvenkadam S; Ghani WA; Cherrington T; Danquah MK
    Biotechnol J; 2014 Jan; 9(1):73-86. PubMed ID: 24227697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.