These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31100735)

  • 1. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors.
    Perera Jayawickramage RA; Balkus KJ; Ferraris JP
    Nanotechnology; 2019 Aug; 30(35):355402. PubMed ID: 31100735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes.
    Perera Jayawickramage RA; Ferraris JP
    Nanotechnology; 2019 Apr; 30(15):155402. PubMed ID: 30645989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-standing interconnected carbon nanofiber electrodes: new structural designs for supercapacitor application.
    El-Shafei MH; Hassanin AH; Shaalan NM; Sharshar T; El-Moneim AA
    Nanotechnology; 2020 May; 31(18):185403. PubMed ID: 31952052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Electrochemical Properties of Porous Carbon Nanofiber Electrodes Derived from New Precursor Polymer: 6FDA-TFMB.
    Jeon B; Ha T; Lee DY; Choi MS; Lee SW; Jung KH
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical energy storage performance of carbon nanofiber electrodes derived from 6FDA-durene.
    Jung KH; Panapitiya N; Ferraris JP
    Nanotechnology; 2018 Jul; 29(27):275701. PubMed ID: 29629876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MnO
    Youe WJ; Kim SJ; Lee SM; Chun SJ; Kang J; Kim YS
    Int J Biol Macromol; 2018 Jun; 112():943-950. PubMed ID: 29438754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors.
    Zhang L; You T; Zhou T; Zhou X; Xu F
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13918-25. PubMed ID: 27181098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Density Lignin-Derived Carbon Nanofiber Supercapacitors with Enhanced Volumetric Energy Density.
    Hérou S; Bailey JJ; Kok M; Schlee P; Jervis R; Brett DJL; Shearing PR; Ribadeneyra MC; Titirici M
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100016. PubMed ID: 34014597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel
    Yang CH; Hsiao YC; Lin LY
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41637-41648. PubMed ID: 34448562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Porous Carbon Nanofiber Electrodes Derived from 6FDA-Durene/PVDF Blends and Their Electrochemical Properties.
    Lee DG; Lee BC; Jung KH
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33653005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Network-Structured Carbon Nanofiber Mats Based on PAN Blends Using Electrospinning and Hot-Pressing Methods for Supercapacitor Applications.
    Ma MJ; Seong JG; Radhakrishnan S; Ko TH; Kim BS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemicellulosa-derived Arenga pinnata bunches as free-standing carbon nanofiber membranes for electrode material supercapacitors.
    Farma R; Apriyani I; Awitdrus A; Taer E; Apriwandi A
    Sci Rep; 2022 Feb; 12(1):2572. PubMed ID: 35173255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications.
    Trabelsi M; Mamun A; Klöcker M; Moulefera I; Pljonkin A; Elleuch K; Sabantina L
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer.
    Youe WJ; Lee SM; Lee SS; Lee SH; Kim YS
    Int J Biol Macromol; 2016 Jan; 82():497-504. PubMed ID: 26459170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
    Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Nanoplatelet (GNPs) Doped Carbon Nanofiber (CNF) System: Effect of GNPs on the Graphitic Structure of Creep Stress and Non-Creep Stress Stabilized Polyacrylonitrile (PAN).
    B Ali A; Renz F; Koch J; Tegenkamp C; Sindelar R
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles.
    Ma Y; Chen D; Fang Z; Zheng Y; Li W; Xu S; Lu X; Shao G; Liu Q; Yang W
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34011610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable Polyacrylonitrile-Copolymer for Melt-Processing and Thermal Carbonization-3D Printing of Carbon Supercapacitor Electrodes with High Capacitance.
    Usselmann M; Bansmann J; Kuehne AJC
    Adv Mater; 2023 Feb; 35(6):e2208484. PubMed ID: 36417702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano MnO
    Guo C; Ma H; Zhang Q; Li M; Jiang H; Chen C; Wang S; Min D
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32213993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density.
    Schlee P; Herou S; Jervis R; Shearing PR; Brett DJL; Baker D; Hosseinaei O; Tomani P; Murshed MM; Li Y; Mostazo-López MJ; Cazorla-Amorós D; Jorge Sobrido AB; Titirici MM
    Chem Sci; 2019 Mar; 10(10):2980-2988. PubMed ID: 30996877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.