These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31100748)
41. DeepPulse: An Uncertainty-aware Deep Neural Network for Heart Rate Estimations from Wrist-worn Photoplethysmography. Ray D; Collins T; Ponnapalli PVS Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1651-1654. PubMed ID: 36086420 [TBL] [Abstract][Full Text] [Related]
42. PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram. Shyam A; Ravichandran V; Preejith SP; Joseph J; Sivaprakasam M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1899-1902. PubMed ID: 31946269 [TBL] [Abstract][Full Text] [Related]
43. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation. Islam MT; Ahmed ST; Shahnaz C; Fattah SA Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957 [TBL] [Abstract][Full Text] [Related]
44. Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices. Burrello A; Pagliari DJ; Risso M; Benatti S; Macii E; Benini L; Poncino M IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1196-1209. PubMed ID: 34673496 [TBL] [Abstract][Full Text] [Related]
45. Detecting cardiac states with wearable photoplethysmograms and implications for out-of-hospital cardiac arrest detection. Khalili M; Lingawi S; Hutton J; Fordyce CB; Christenson J; Shadgan B; Grunau B; Kuo C Sci Rep; 2024 Oct; 14(1):23185. PubMed ID: 39369015 [TBL] [Abstract][Full Text] [Related]
46. Characterization and reduction of motion artifacts in photoplethysmographic signals from a wrist-worn device. Tăuţan AM; Young A; Wentink E; Wieringa F Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6146-9. PubMed ID: 26737695 [TBL] [Abstract][Full Text] [Related]
47. Stochastic Modeling for Photoplethysmography Compression Xu K; Jiang X; Dai C; Chen W Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5925-5928. PubMed ID: 33019323 [TBL] [Abstract][Full Text] [Related]
48. A motion-tolerant approach for monitoring SpO Fan F; Yan Y; Tang Y; Zhang H Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826 [TBL] [Abstract][Full Text] [Related]
49. An ML-Based Approach to Reconstruct Heart Rate from PPG in Presence of Motion Artifacts. Vicente-Samper JM; Tamantini C; Ávila-Navarro E; De La Casa-Lillo MÁ; Zollo L; Sabater-Navarro JM; Cordella F Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504116 [TBL] [Abstract][Full Text] [Related]
50. Comparison between electrocardiogram- and photoplethysmogram-derived features for atrial fibrillation detection in free-living conditions. Eerikäinen LM; Bonomi AG; Schipper F; Dekker LRC; Vullings R; de Morree HM; Aarts RM Physiol Meas; 2018 Aug; 39(8):084001. PubMed ID: 29995641 [TBL] [Abstract][Full Text] [Related]
51. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Guo Z; Ding C; Hu X; Rudin C Physiol Meas; 2021 Dec; 42(12):. PubMed ID: 34794126 [No Abstract] [Full Text] [Related]
52. Identification of Ictal Tachycardia in Focal Motor- and Non-Motor Seizures by Means of a Wearable PPG Sensor. Glasstetter M; Böttcher S; Zabler N; Epitashvili N; Dümpelmann M; Richardson MP; Schulze-Bonhage A Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577222 [TBL] [Abstract][Full Text] [Related]
53. A Supervised Approach to Robust Photoplethysmography Quality Assessment. Pereira T; Gadhoumi K; Ma M; Liu X; Xiao R; Colorado RA; Keenan KJ; Meisel K; Hu X IEEE J Biomed Health Inform; 2020 Mar; 24(3):649-657. PubMed ID: 30951482 [TBL] [Abstract][Full Text] [Related]
54. Transfer learning from ECG to PPG for improved sleep staging from wrist-worn wearables. Li Q; Li Q; Cakmak AS; Da Poian G; Bliwise DL; Vaccarino V; Shah AJ; Clifford GD Physiol Meas; 2021 May; 42(4):. PubMed ID: 33761477 [No Abstract] [Full Text] [Related]
55. The accuracy of heartbeat detection using photoplethysmography technology in cardiac patients. Blok S; Piek MA; Tulevski II; Somsen GA; Winter MM J Electrocardiol; 2021; 67():148-157. PubMed ID: 34256184 [TBL] [Abstract][Full Text] [Related]
56. Real-Time PPG Signal Conditioning with Long Short-Term Memory (LSTM) Network for Wearable Devices. Wójcikowski M Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009705 [TBL] [Abstract][Full Text] [Related]
57. Quantifying Missingness in Wearable Heart Rate Recordings. Collins T; Woolley SI; Oniani S; Pandyan A Stud Health Technol Inform; 2021 May; 281():1077-1078. PubMed ID: 34042845 [TBL] [Abstract][Full Text] [Related]
58. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. Khalid SG; Zhang J; Chen F; Zheng D J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819 [TBL] [Abstract][Full Text] [Related]
59. Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis. Couceiro R; Carvalho P; Paiva RP; Henriques J; Muehlsteff J Physiol Meas; 2014 Dec; 35(12):2369-88. PubMed ID: 25390186 [TBL] [Abstract][Full Text] [Related]
60. Monitoring of heart rate and inter-beat intervals with wrist plethysmography in patients with atrial fibrillation. Harju J; Tarniceriu A; Parak J; Vehkaoja A; Yli-Hankala A; Korhonen I Physiol Meas; 2018 Jun; 39(6):065007. PubMed ID: 29856730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]