BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 31100819)

  • 1. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis.
    Zhang X; Zhang D; Sun W; Wang T
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis.
    Zhang H; Li Y; Pu M; Xu P; Liang G; Yu D
    Plant Cell Environ; 2020 Jan; 43(1):261-274. PubMed ID: 31674679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.
    Senoura T; Sakashita E; Kobayashi T; Takahashi M; Aung MS; Masuda H; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2017 Nov; 95(4-5):375-387. PubMed ID: 28871478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants.
    Suzuki M; Tsukamoto T; Inoue H; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2008 Apr; 66(6):609-17. PubMed ID: 18224446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice.
    Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK
    J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice.
    Bashir K; Nozoye T; Nagasaka S; Rasheed S; Miyauchi N; Seki M; Nakanishi H; Nishizawa NK
    J Exp Bot; 2017 Mar; 68(7):1785-1795. PubMed ID: 28369596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
    Yang A; Zhang WH
    Plant Cell Physiol; 2016 Jun; 57(6):1271-80. PubMed ID: 27257291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron transport and its regulation in plants.
    Kobayashi T; Nozoye T; Nishizawa NK
    Free Radic Biol Med; 2019 Mar; 133():11-20. PubMed ID: 30385345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions.
    Ogo Y; Itai RN; Nakanishi H; Kobayashi T; Takahashi M; Mori S; Nishizawa NK
    Plant J; 2007 Aug; 51(3):366-77. PubMed ID: 17559517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice.
    Kobayashi T; Nakanishi H; Takahashi M; Kawasaki S; Nishizawa NK; Mori S
    Planta; 2001 Apr; 212(5-6):864-71. PubMed ID: 11346963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Chemistry Research on the Mechanistic Elucidation of Iron Acquisition in Barley.
    Namba K; Murata Y
    Biol Pharm Bull; 2018; 41(10):1502-1507. PubMed ID: 30270318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression of iron homeostasis-related genes during rice germination.
    Nozoye T; Inoue H; Takahashi M; Ishimaru Y; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2007 May; 64(1-2):35-47. PubMed ID: 17333504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants.
    Nozoye T; Nagasaka S; Kobayashi T; Takahashi M; Sato Y; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK
    J Biol Chem; 2011 Feb; 286(7):5446-54. PubMed ID: 21156806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron uptake, trafficking and homeostasis in plants.
    Hell R; Stephan UW
    Planta; 2003 Feb; 216(4):541-51. PubMed ID: 12569395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytosiderophores revisited: 2'-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings.
    Araki R; Namba K; Murata Y; Murata J
    Plant Signal Behav; 2015; 10(6):e1031940. PubMed ID: 26023724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of OsYSL15 leads to iron inefficiency in rice plants.
    Lee S; Chiecko JC; Kim SA; Walker EL; Lee Y; Guerinot ML; An G
    Plant Physiol; 2009 Jun; 150(2):786-800. PubMed ID: 19376836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis.
    Zhang X; Xiao K; Li S; Li J; Huang J; Chen R; Pang S; Zhou X
    BMC Plant Biol; 2022 Jan; 22(1):37. PubMed ID: 35039017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa.
    Zheng L; Ying Y; Wang L; Wang F; Whelan J; Shou H
    BMC Plant Biol; 2010 Aug; 10():166. PubMed ID: 20699001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A receptor-like protein RMC is involved in regulation of iron acquisition in rice.
    Yang A; Li Y; Xu Y; Zhang WH
    J Exp Bot; 2013 Nov; 64(16):5009-20. PubMed ID: 24014863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley.
    Suzuki M; Takahashi M; Tsukamoto T; Watanabe S; Matsuhashi S; Yazaki J; Kishimoto N; Kikuchi S; Nakanishi H; Mori S; Nishizawa NK
    Plant J; 2006 Oct; 48(1):85-97. PubMed ID: 16972867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.