BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31100828)

  • 1. A Role for Lipid Mediators in Acute Myeloid Leukemia.
    Loew A; Köhnke T; Rehbeil E; Pietzner A; Weylandt KH
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Omega-3 Fatty Acids on Immune Cells.
    Gutiérrez S; Svahn SL; Johansson ME
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia.
    Wang A; Zhong H
    Hematology; 2018 Dec; 23(10):729-739. PubMed ID: 29902132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Angiogenesis in patients with hematologic malignancies].
    Mesters RM; Padró T; Steins M; Bieker R; Retzlaff S; Kessler T; Kienast J; Berdel WE
    Onkologie; 2001 Sep; 24 Suppl 5():75-80. PubMed ID: 11600818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyunsaturated fatty acids in inflammatory bowel diseases: a reappraisal of effects and therapeutic approaches.
    Marion-Letellier R; Savoye G; Beck PL; Panaccione R; Ghosh S
    Inflamm Bowel Dis; 2013 Mar; 19(3):650-61. PubMed ID: 23328774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment.
    Isidori A; Salvestrini V; Ciciarello M; Loscocco F; Visani G; Parisi S; Lecciso M; Ocadlikova D; Rossi L; Gabucci E; Clissa C; Curti A
    Expert Rev Hematol; 2014 Dec; 7(6):807-18. PubMed ID: 25227702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral feeding with polyunsaturated fatty acids fosters hematopoiesis and thrombopoiesis in healthy and bone marrow-transplanted mice.
    Limbkar K; Dhenge A; Jadhav DD; Thulasiram HV; Kale V; Limaye L
    J Nutr Biochem; 2017 Sep; 47():94-105. PubMed ID: 28570944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. n-3 Polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation.
    Picou F; Debeissat C; Bourgeais J; Gallay N; Ferrié E; Foucault A; Ravalet N; Maciejewski A; Vallet N; Ducrocq E; Haddaoui L; Domenech J; Hérault O; Gyan E
    Pharmacol Res; 2018 Oct; 136():45-55. PubMed ID: 30142422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune composition and its association with hematologic recovery after chemotherapeutic injury in acute myeloid leukemia.
    Kenswil KJG; Pisterzi P; Feyen J; Ter Borg M; Rombouts E; Braakman E; Raaijmakers MHGP
    Exp Hematol; 2022 Jan; 105():32-38.e2. PubMed ID: 34800603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook.
    Song X; Peng Y; Wang X; Chen Q; Lan X; Shi F
    Clin Transl Oncol; 2023 Jun; 25(6):1545-1553. PubMed ID: 36587109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bone marrow microenvironment - Home of the leukemic blasts.
    Shafat MS; Gnaneswaran B; Bowles KM; Rushworth SA
    Blood Rev; 2017 Sep; 31(5):277-286. PubMed ID: 28318761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune regulation and anti-cancer activity by lipid inflammatory mediators.
    Khadge S; Sharp JG; McGuire TR; Thiele GM; Black P; DiRusso C; Cook L; Klassen LW; Talmadge JE
    Int Immunopharmacol; 2018 Dec; 65():580-592. PubMed ID: 30447537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways.
    Taghiloo S; Asgarian-Omran H
    Crit Rev Oncol Hematol; 2021 Jan; 157():103164. PubMed ID: 33271388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.
    Goswami M; Prince G; Biancotto A; Moir S; Kardava L; Santich BH; Cheung F; Kotliarov Y; Chen J; Shi R; Zhou H; Golding H; Manischewitz J; King L; Kunz LM; Noonan K; Borrello IM; Smith BD; Hourigan CS
    J Transl Med; 2017 Jul; 15(1):155. PubMed ID: 28693586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is the role of the bone marrow microenvironment in AML?
    Mulherkar N; Scadden DT
    Best Pract Res Clin Haematol; 2021 Dec; 34(4):101328. PubMed ID: 34865700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catch me if you can: how AML and its niche escape immunotherapy.
    Tettamanti S; Pievani A; Biondi A; Dotti G; Serafini M
    Leukemia; 2022 Jan; 36(1):13-22. PubMed ID: 34302116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting hematologic malignancies by inhibiting E-selectin: A sweet spot for AML therapy?
    Uy GL; DeAngelo DJ; Lozier JN; Fisher DM; Jonas BA; Magnani JL; Becker PS; Lazarus HM; Winkler IG
    Blood Rev; 2024 May; 65():101184. PubMed ID: 38493006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity.
    Lamble AJ; Lind EF
    Front Oncol; 2018; 8():213. PubMed ID: 29951373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histamine dihydrochloride and low-dose interleukin-2 as post-consolidation immunotherapy in acute myeloid leukemia.
    Thorén FB; Romero AI; Brune M; Hellstrand K
    Expert Opin Biol Ther; 2009 Sep; 9(9):1217-23. PubMed ID: 19653866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and emerging therapies for acute myeloid leukemia.
    Robak T; Wierzbowska A
    Clin Ther; 2009; 31 Pt 2():2349-70. PubMed ID: 20110045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.