BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31100828)

  • 41. Novel Antigen Targets for Immunotherapy of Acute Myeloid Leukemia.
    Goswami M; Hourigan CS
    Curr Drug Targets; 2017; 18(3):296-303. PubMed ID: 25706110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids.
    Dupertuis YM; Meguid MM; Pichard C
    Curr Opin Clin Nutr Metab Care; 2007 Jul; 10(4):427-32. PubMed ID: 17563460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia.
    Landry B; Gül-Uludağ H; Plianwong S; Kucharski C; Zak Z; Parmar MB; Kutsch O; Jiang H; Brandwein J; Uludağ H
    J Control Release; 2016 Feb; 224():8-21. PubMed ID: 26742943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis.
    Desbourdes L; Javary J; Charbonnier T; Ishac N; Bourgeais J; Iltis A; Chomel JC; Turhan A; Guilloton F; Tarte K; Demattei MV; Ducrocq E; Rouleux-Bonnin F; Gyan E; Hérault O; Domenech J
    Stem Cells Dev; 2017 May; 26(10):709-722. PubMed ID: 28394200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of Lipid Mediator Formation Due to Lipoprotein Apheresis.
    Weylandt KH; Schmöcker C; Ostermann AI; Kutzner L; Willenberg I; Kiesler S; Steinhagen-Thiessen E; Schebb NH; Kassner U
    Nutrients; 2019 Feb; 11(2):. PubMed ID: 30744123
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Molecular mechanisms of action and health benefits of polyunsaturated fatty acids].
    Rodríguez-Cruz M; Tovar AR; del Prado M; Torres N
    Rev Invest Clin; 2005; 57(3):457-72. PubMed ID: 16187707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The imbalanced profile and clinical significance of T helper associated cytokines in bone marrow microenvironment of the patients with acute myeloid leukemia.
    Sun YX; Kong HL; Liu CF; Yu S; Tian T; Ma DX; Ji CY
    Hum Immunol; 2014 Feb; 75(2):113-8. PubMed ID: 24269703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Dimensional Analysis of Acute Myeloid Leukemia Reveals Phenotypic Changes in Persistent Cells during Induction Therapy.
    Ferrell PB; Diggins KE; Polikowsky HG; Mohan SR; Seegmiller AC; Irish JM
    PLoS One; 2016; 11(4):e0153207. PubMed ID: 27074138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting the microenvironment in acute myeloid leukemia.
    Rashidi A; Uy GL
    Curr Hematol Malig Rep; 2015 Jun; 10(2):126-31. PubMed ID: 25921388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models.
    Portwood S; Lal D; Hsu YC; Vargas R; Johnson MK; Wetzler M; Hart CP; Wang ES
    Clin Cancer Res; 2013 Dec; 19(23):6506-19. PubMed ID: 24088735
    [TBL] [Abstract][Full Text] [Related]  

  • 51. N-3 polyunsaturated fatty acids and allergic disease.
    Prescott SL; Calder PC
    Curr Opin Clin Nutr Metab Care; 2004 Mar; 7(2):123-9. PubMed ID: 15075701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PD-1 signaling and inhibition in AML and MDS.
    Haroun F; Solola SA; Nassereddine S; Tabbara I
    Ann Hematol; 2017 Sep; 96(9):1441-1448. PubMed ID: 28643044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Anti-inflammatory pro-resolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids].
    Nowak JZ
    Postepy Hig Med Dosw (Online); 2010 Mar; 64():115-32. PubMed ID: 20354260
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Composition and function of the hemopoietic microenvironment in human myeloid leukemia.
    Mayani H
    Leukemia; 1996 Jun; 10(6):1041-7. PubMed ID: 8667639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immunomodulatory Drugs: IMiDs in Acute Myeloid Leukemia (AML).
    Zeidner JF; Foster MC
    Curr Drug Targets; 2017; 18(3):304-314. PubMed ID: 25738295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition.
    Raneros AB; Minguela A; Rodriguez RM; Colado E; Bernal T; Anguita E; Mogorron AV; Gil AC; Vidal-Castiñeira JR; Márquez-Kisinousky L; Bulnes PD; Marin AM; Garay MCG; Suarez-Alvarez B; Lopez-Larrea C
    Oncotarget; 2017 May; 8(19):31959-31976. PubMed ID: 28404876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia.
    Stuani L; Riols F; Millard P; Sabatier M; Batut A; Saland E; Viars F; Tonini L; Zaghdoudi S; Linares LK; Portais JC; Sarry JE; Bertrand-Michel J
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30366412
    [No Abstract]   [Full Text] [Related]  

  • 58. New approaches for the immunotherapy of acute myeloid leukemia.
    Geiger TL; Rubnitz JE
    Discov Med; 2015 Apr; 19(105):275-84. PubMed ID: 25977190
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Plant omega 3- and omega 6-fatty acids].
    Metzner C; Lüder W
    Pharm Unserer Zeit; 2007; 36(2):134-41. PubMed ID: 17424999
    [No Abstract]   [Full Text] [Related]  

  • 60. Intravoxel incoherent motion diffusion-weighted imaging of bone marrow in patients with acute myeloid leukemia: a pilot study of prognostic value.
    Niu J; Li W; Wang H; Wu W; Gong T; Huang N; Wang J; Qi Y
    J Magn Reson Imaging; 2017 Aug; 46(2):476-482. PubMed ID: 28211619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.