These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31100927)
1. Improvement of Cyclic Void Growth Model for Ultra-Low Cycle Fatigue Prediction of Steel Bridge Piers. Li S; Xie X; Liao Y Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100927 [TBL] [Abstract][Full Text] [Related]
2. Effect of Corroded Surface Morphology on Ultra-Low Cycle Fatigue of Steel Bridge Piers. Song F; Zhang T; Xie X Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33535540 [TBL] [Abstract][Full Text] [Related]
3. A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels. Yu M; Xie X; Li S Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268892 [TBL] [Abstract][Full Text] [Related]
4. Prediction of the Ultra-Low-Cycle Fatigue Damage of Q345qC Steel and its Weld Joint. Tian Q; Zhuge H; Xie X Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31816879 [TBL] [Abstract][Full Text] [Related]
5. Stress Triaxiality in Anisotropic Metal Sheets-Definition and Experimental Acquisition for Numerical Damage Prediction. Rickhey F; Hong S Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683037 [TBL] [Abstract][Full Text] [Related]
6. Correlation of Macroscopic Fracture Behavior with Microscopic Fracture Mechanism for AHSS Sheet. Qian L; Wang X; Sun C; Dai A Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30889847 [TBL] [Abstract][Full Text] [Related]
7. Seismic collapse assessment of bridge piers constructed with steel fibers reinforced concrete. Pang Y; Li L PLoS One; 2018; 13(7):e0200072. PubMed ID: 29990364 [TBL] [Abstract][Full Text] [Related]
8. Modeling of Hydrogen-Charged Notched Tensile Tests of an X70 Pipeline Steel with a Hydrogen-Informed Gurson Model. Depraetere R; De Waele W; Cauwels M; Depover T; Verbeken K; Hertelé S Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445153 [TBL] [Abstract][Full Text] [Related]
9. Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique. Chen X; Du K; Du Y; Lian T; Liu J; Bai R; Li Z; Yang Y; Jung D Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33540797 [TBL] [Abstract][Full Text] [Related]
10. Simulation of Fatigue Fracture Detection of Bridge Steel Structures under Cyclic Loads. Yang D; Yao L; Pang Q Comput Intell Neurosci; 2022; 2022():8534824. PubMed ID: 36148424 [TBL] [Abstract][Full Text] [Related]
11. Low Cycle Fatigue Life Evaluation of Notched Specimens Considering Strain Gradient. Qin S; Xiong Z; Ma Y; Zhang K Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102226 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Phenomenon of Plasticity Loss of Steel Core Made by Selective Laser Melting Method in Zone of Pressure Mould Conformal Cooling Channel. Piekło J; Garbacz-Klempka A Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374389 [TBL] [Abstract][Full Text] [Related]
13. Fatigue Properties of the Ultra-High Strength Steel TM210A. Yin GQ; Kang X; Zhao GP Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28891934 [TBL] [Abstract][Full Text] [Related]
14. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds. Song W; Liu X; Berto F; Razavi SMJ Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140 [TBL] [Abstract][Full Text] [Related]
15. Fatigue Life Prediction of Notched Details Using SWT Model and LEFM-Based Approach. Hao R; Wen Z; Xin H; Lin W Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903056 [TBL] [Abstract][Full Text] [Related]
16. A Fatigue Life Prediction Method Based on Strain Intensity Factor. Zhang W; Liu H; Wang Q; He J Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the Failure Process of Elements Subjected to Monotonic and Cyclic Loading Using the Wierzbicki-Bai Model. Janus-Galkiewicz U; Galkiewicz J Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771791 [TBL] [Abstract][Full Text] [Related]
18. Effect of Testing Conditions on Low-Cycle Fatigue Durability of Pre-Strained S420M Steel Specimens. Mroziński S; Piotrowski M; Egner H Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673190 [TBL] [Abstract][Full Text] [Related]
19. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities. Chen X; Peng Y; Peng S; Yao S; Chen C; Xu P PLoS One; 2017; 12(7):e0181983. PubMed ID: 28759617 [TBL] [Abstract][Full Text] [Related]
20. Experimental and Numerical Study of Combined High and Low Cycle Fatigue Performance of Low Alloy Steel and Engineering Application. Tang Z; Chen Z; He Z; Hu X; Xue H; Zhuge H Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]