BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31101077)

  • 21. The
    Ganusova EE; Vo LT; Abraham PE; O'Neal Yoder L; Hettich RL; Alexandre G
    mSystems; 2021 Feb; 6(1):. PubMed ID: 33594007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through Azospirillum brasilense-Pseudomonas protegens co-cultivation.
    Pagnussat LA; Salcedo F; Maroniche G; Keel C; Valverde C; Creus CM
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27742715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum.
    Kochar M; Srivastava S
    J Basic Microbiol; 2012 Apr; 52(2):123-31. PubMed ID: 21656820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared fourier transform (DRIFT) spectroscopic study.
    Kamnev AA; Sadovnikova JN; Tarantilis PA; Polissiou MG; Antonyuk LP
    Microb Ecol; 2008 Nov; 56(4):615-24. PubMed ID: 18437449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense.
    Zhulin IB; Armitage JP
    J Bacteriol; 1993 Feb; 175(4):952-8. PubMed ID: 8432718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize.
    Couillerot O; Poirier MA; Prigent-Combaret C; Mavingui P; Caballero-Mellado J; Moënne-Loccoz Y
    J Appl Microbiol; 2010 Aug; 109(2):528-538. PubMed ID: 20141548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.
    Van Puyvelde S; Cloots L; Engelen K; Das F; Marchal K; Vanderleyden J; Spaepen S
    Microb Ecol; 2011 May; 61(4):723-8. PubMed ID: 21340736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping.
    Bible A; Russell MH; Alexandre G
    J Bacteriol; 2012 Jul; 194(13):3343-55. PubMed ID: 22522896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple CheY Homologs Control Swimming Reversals and Transient Pauses in Azospirillum brasilense.
    Mukherjee T; Elmas M; Vo L; Alexiades V; Hong T; Alexandre G
    Biophys J; 2019 Apr; 116(8):1527-1537. PubMed ID: 30975454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of substrate composition and flow rate on growth of Azospirillum brasilense Cd in a co-culture with 3 sorghum rhizobacteria.
    Lippi D; De Paolis MR; Di Mattia E; Pietrosanti T; Cacciari I
    Can J Microbiol; 2004 Oct; 50(10):861-7. PubMed ID: 15644901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7.
    Gullett JM; Bible A; Alexandre G
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28416707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerotaxis and chemotaxis ofAzospirillum brasilense: A note.
    Okon Y; Cakmakci L; Nur I; Chet I
    Microb Ecol; 1980 Sep; 6(3):277-80. PubMed ID: 24227135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A CheR/CheB fusion protein is involved in cyst cell development and chemotaxis in Azospirillum brasilense Sp7.
    Wu L; Cui Y; Hong Y; Chen S
    Microbiol Res; 2011 Dec; 166(8):606-17. PubMed ID: 21232929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct measurement of the aerotactic response in a bacterial suspension.
    Bouvard J; Douarche C; Mergaert P; Auradou H; Moisy F
    Phys Rev E; 2022 Sep; 106(3-1):034404. PubMed ID: 36266851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling growth and biochemical activities of Azospirillum spp.
    Kefalogianni I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):352-7. PubMed ID: 11935187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.
    Arruebarrena Di Palma A; Pereyra CM; Moreno Ramirez L; Xiqui Vázquez ML; Baca BE; Pereyra MA; Lamattina L; Creus CM
    FEMS Microbiol Lett; 2013 Jan; 338(1):77-85. PubMed ID: 23082946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Azospirillum brasilense: Laboratory Maintenance and Genetic Manipulation.
    Gullett J; O'Neal L; Mukherjee T; Alexandre G
    Curr Protoc Microbiol; 2017 Nov; 47():3E.2.1-3E.2.17. PubMed ID: 29120483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense.
    Jofré E; Lagares A; Mori G
    FEMS Microbiol Lett; 2004 Feb; 231(2):267-75. PubMed ID: 14987774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An energy taxis transducer promotes root colonization by Azospirillum brasilense.
    Greer-Phillips SE; Stephens BB; Alexandre G
    J Bacteriol; 2004 Oct; 186(19):6595-604. PubMed ID: 15375141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemotaxis of azospirillum species to aromatic compounds.
    Lopez-de-Victoria G; Lovell CR
    Appl Environ Microbiol; 1993 Sep; 59(9):2951-5. PubMed ID: 16349041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.