These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31101244)

  • 1. Enabling low power acoustics for capillary sonoreactors.
    Navarro-Brull FJ; Teixeira AR; Giri G; Gómez R
    Ultrason Sonochem; 2019 Sep; 56():105-113. PubMed ID: 31101244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of acoustic and geometric effects on the sonoreactor performance.
    Rashwan SS; Dincer I; Mohany A
    Ultrason Sonochem; 2020 Nov; 68():105174. PubMed ID: 32505100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic reactor set-ups and applications: A review.
    Adamou P; Harkou E; Villa A; Constantinou A; Dimitratos N
    Ultrason Sonochem; 2024 Jul; 107():106925. PubMed ID: 38810367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respective contribution of cavitation and convective flow to local stirring in sonoreactors.
    Hihn JY; Doche ML; Mandroyan A; Hallez L; Pollet BG
    Ultrason Sonochem; 2011 Jul; 18(4):881-7. PubMed ID: 21382572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation and improvement of a reference cylindrical sonoreactor.
    Memoli G; Gélat PN; Hodnett M; Zeqiri B
    Ultrason Sonochem; 2012 Jul; 19(4):939-52. PubMed ID: 22316613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors.
    Servant G; Laborde JL; Hita A; Caltagirone JP; Gérard A
    Ultrason Sonochem; 2003 Oct; 10(6):347-55. PubMed ID: 12927611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.
    Tian Y; Liu Z; Li X; Zhang L; Li R; Jiang R; Dong F
    Ultrason Sonochem; 2018 May; 43():29-37. PubMed ID: 29555286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review.
    Tudela I; Sáez V; Esclapez MD; Díez-García MI; Bonete P; González-García J
    Ultrason Sonochem; 2014 May; 21(3):909-19. PubMed ID: 24355287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth effect on the inertial collapse of cavitation bubble under ultrasound: Special emphasis on the role of the wave attenuation.
    Kerabchi N; Merouani S; Hamdaoui O
    Ultrason Sonochem; 2018 Nov; 48():136-150. PubMed ID: 30080536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contamination-free high capacity converging waves sonoreactors for the chemical industry.
    Dion JL
    Ultrason Sonochem; 2009 Feb; 16(2):212-20. PubMed ID: 18789748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of two different ultrasound reactors for the treatment of cellulose fibers.
    Pamidi TRK; Johansson Ö; Löfqvist T; Shankar V
    Ultrason Sonochem; 2020 Apr; 62():104841. PubMed ID: 31806547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation.
    Lim M; Ashokkumar M; Son Y
    Ultrason Sonochem; 2014 Nov; 21(6):1988-93. PubMed ID: 24690295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of Weissler method for scale-up a Kraft pulp oxidation by TEMPO-mediated system from a batch mode to a continuous flow-through sonoreactor.
    Paquin M; Loranger É; Hannaux V; Chabot B; Daneault C
    Ultrason Sonochem; 2013 Jan; 20(1):103-8. PubMed ID: 22939000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial acoustic field along a solid-liquid fluidized bed under power ultrasound.
    Grosjean V; Julcour C; Louisnard O; Barthe L
    Ultrason Sonochem; 2019 Sep; 56():274-283. PubMed ID: 31101263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed ultrasound for temperature control and clogging prevention in micro-reactors.
    Delacour C; Lutz C; Kuhn S
    Ultrason Sonochem; 2019 Jul; 55():67-74. PubMed ID: 31084792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sonoprocessing: From Concepts to Large-Scale Reactors.
    Meroni D; Djellabi R; Ashokkumar M; Bianchi CL; Boffito DC
    Chem Rev; 2022 Feb; 122(3):3219-3258. PubMed ID: 34818504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-frequency sonoreactor characterisation in the frequency domain using a semi-empirical bubbly liquid model.
    Chu JK; Tiong TJ; Chong S; Asli UA; Yap YH
    Ultrason Sonochem; 2021 Dec; 80():105818. PubMed ID: 34781044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.