These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31101263)

  • 21. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of pressure on the acoustic cavitation in saturated CO
    Gao H; Pei K; Hu G; Liu W; Meng A; Wang H; Shao H; Li W
    Ultrason Sonochem; 2022 Feb; 83():105934. PubMed ID: 35114553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field.
    Ma X; Huang B; Wang G; Zhang M
    Ultrason Sonochem; 2017 Jan; 34():164-172. PubMed ID: 27773232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A predictive model obtained by identification for the ultrasonic "equivalent" flow velocity at surface vicinity.
    Mandroyan A; Hihn JY; Doche ML; Pothier JM
    Ultrason Sonochem; 2010 Aug; 17(6):965-77. PubMed ID: 20071207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves.
    Chen Y; Ni C; Xie G; Liu Q
    Ultrason Sonochem; 2020 Jun; 64():105003. PubMed ID: 32062535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatio-temporal dynamics of cavitation bubble clouds in a low frequency reactor: comparison between theoretical and experimental results.
    Servant G; Laborde JL; Hita A; Caltagirone JP; Gérard A
    Ultrason Sonochem; 2001 Jul; 8(3):163-74. PubMed ID: 11441594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
    Louisnard O; Cogné C; Labouret S; Montes-Quiroz W; Peczalski R; Baillon F; Espitalier F
    Ultrason Sonochem; 2015 Sep; 26():186-192. PubMed ID: 25800984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
    Wei Z; Weavers LK
    Ultrason Sonochem; 2016 Jul; 31():490-8. PubMed ID: 26964976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of acoustic and geometric effects on the sonoreactor performance.
    Rashwan SS; Dincer I; Mohany A
    Ultrason Sonochem; 2020 Nov; 68():105174. PubMed ID: 32505100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promotion of oxygen transfer in three-phase fluidized-bed bioreactors by floating bubble breakers.
    Kang Y; Fan LT; Min BT; Kim SD
    Biotechnol Bioeng; 1991 Mar; 37(6):580-6. PubMed ID: 18600647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles.
    Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y
    Ultrason Sonochem; 2010 Feb; 17(2):460-72. PubMed ID: 19751988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A viable method to predict acoustic streaming in presence of cavitation.
    Louisnard O
    Ultrason Sonochem; 2017 Mar; 35(Pt A):518-524. PubMed ID: 27666196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.
    Dogan H; Popov V
    Ultrason Sonochem; 2016 May; 30():87-97. PubMed ID: 26611813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency.
    Thanh Nguyen T; Asakura Y; Koda S; Yasuda K
    Ultrason Sonochem; 2017 Nov; 39():301-306. PubMed ID: 28732949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies.
    Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A
    Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origin of the broad-band noise in acoustic cavitation.
    Yasui K
    Ultrason Sonochem; 2023 Feb; 93():106276. PubMed ID: 36638653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.