These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31101289)

  • 1. Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst.
    Mishra RK; Kumar VB; Victor A; Pulidindi IN; Gedanken A
    Ultrason Sonochem; 2019 Sep; 56():55-62. PubMed ID: 31101289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural.
    Dulie NW; Woldeyes B; Demsash HD
    Int J Biol Macromol; 2021 Feb; 171():10-16. PubMed ID: 33412194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Synthesis of Furfural from Biomass Using SnCl₄ as Catalyst in Ionic Liquid.
    Nie Y; Hou Q; Li W; Bai C; Bai X; Ju M
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30736429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts.
    Lam E; Majid E; Leung AC; Chong JH; Mahmoud KA; Luong JH
    ChemSusChem; 2011 Apr; 4(4):535-41. PubMed ID: 21416622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.
    Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X
    Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
    Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R
    Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of CuO and ZnO nano- and microparticles in the plant environment.
    Dimkpa CO; Latta DE; McLean JE; Britt DW; Boyanov MI; Anderson AJ
    Environ Sci Technol; 2013 May; 47(9):4734-42. PubMed ID: 23540424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts.
    García-Sancho C; Sádaba I; Moreno-Tost R; Mérida-Robles J; Santamaría-González J; López-Granados M; Maireles-Torres P
    ChemSusChem; 2013 Apr; 6(4):635-42. PubMed ID: 23512820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.
    Yang Y; Hu CW; Abu-Omar MM
    ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.
    Zhang T; Li W; Xu Z; Liu Q; Ma Q; Jameel H; Chang HM; Ma L
    Bioresour Technol; 2016 Jun; 209():108-14. PubMed ID: 26967333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc-Doped Copper Oxide Nanocomposites Inhibit the Growth of Pancreatic Cancer by Inducing Autophagy Through AMPK/mTOR Pathway.
    Li X; Xu H; Li C; Qiao G; Farooqi AA; Gedanken A; Liu X; Lin X
    Front Pharmacol; 2019; 10():319. PubMed ID: 31001120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures.
    Sener C; Motagamwala AH; Alonso DM; Dumesic JA
    ChemSusChem; 2018 Jul; 11(14):2321-2331. PubMed ID: 29776010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CuO and ZnO Nanoparticle Application in Synthetic Soil Modulates Morphology, Nutritional Contents, and Metal Analysis of
    Zafar H; Aziz T; Khan B; Mannan A; Rehman RU; Zia M
    ACS Omega; 2020 Jun; 5(23):13566-13577. PubMed ID: 32566821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells.
    Xue XX; Ma CL; Di JH; Huo XY; He YC
    Bioresour Technol; 2018 Nov; 268():292-299. PubMed ID: 30086456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phyto-mediated synthesized multifunctional Zn/CuO NPs hybrid nanoparticles for enhanced activity for kidney cancer therapy: A complete physical and biological analysis.
    Xue Y; Yu G; Shan Z; Li Z
    J Photochem Photobiol B; 2018 Sep; 186():131-136. PubMed ID: 30036830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Conversion of Xylose to Furfural by
    Sajid M; Rizwan Dilshad M; Saif Ur Rehman M; Liu D; Zhao X
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33921241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic dehydration of xylose to furfural: vanadyl pyrophosphate as source of active soluble species.
    Sádaba I; Lima S; Valente AA; López Granados M
    Carbohydr Res; 2011 Dec; 346(17):2785-91. PubMed ID: 22055820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone.
    Xu Z; Li W; Du Z; Wu H; Jameel H; Chang HM; Ma L
    Bioresour Technol; 2015 Dec; 198():764-71. PubMed ID: 26454364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient catalytic conversion of corn stalk and xylose into furfural over sulfonated graphene in γ-valerolactone.
    Ma J; Li W; Guan S; Liu Q; Li Q; Zhu C; Yang T; Ogunbiyi AT; Ma L
    RSC Adv; 2019 Apr; 9(19):10569-10577. PubMed ID: 35515312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.