BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 311014)

  • 1. How does reduced external K+ concentration affect the rate of Na+ efflux? Evidence against the K-Na coupled pump but in support of the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1978; 10(4):353-65. PubMed ID: 311014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underestimation of Na permeability in muscle cells: implications for the theory of cell potential and for energy requirement of the Na pump.
    Ling GN
    Physiol Chem Phys; 1980; 12(3):215-32. PubMed ID: 6968916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple fractions of sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous efflux of K+ and Na+ from frog sartorius muscle freed of extracellular fluids: evidence for rapidly exchanging Na+ from the cells.
    Ling GN; Walton CL
    Physiol Chem Phys; 1975; 7(6):501-15. PubMed ID: 1083537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+ and K+ levels in living cells: do they depend on the rate of outward transport of Na+?
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys; 1976; 8(5):389-95. PubMed ID: 1088477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Sodium currents in muscles incubated in potassium-free Ringer's solution. Effect of ouabain on unidirectional sodium currents].
    Simonian AL; Adamian SIa; Marikian GG
    Biofizika; 1979; 24(6):1070-3. PubMed ID: 508822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extracellular compartments of frog skeletal muscle.
    Neville MC; Mathias RT
    J Physiol; 1979 Mar; 288():45-70. PubMed ID: 313982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative interaction among cell surface sites: evidence in support of the surface adsorption theory of cellular electrical potentials.
    Ling GN; Fisher A
    Physiol Chem Phys Med NMR; 1983; 15(5):369-78. PubMed ID: 6609378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 24Na-transport increasing effect of veratrine in frog sartorius muscle influenced by the tonicity, composition and temperature of the external environment.
    Szabó B; Varga E
    Acta Physiol Acad Sci Hung; 1979; 53(1):81-91. PubMed ID: 315156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of sodium for sodium exchange by phlorizin in frog sartorius muscle.
    Cseri J; Kovács T; Molnár G; Varga E
    Acta Physiol Hung; 1986; 67(3):307-16. PubMed ID: 2428205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indifference of the resting potential of frog muscle cells to external Mg++ in the face of high Mg++ permeability.
    Ling GN; Walton CL; Ochsenfeld MM
    Physiol Chem Phys Med NMR; 1983; 15(5):379-90. PubMed ID: 6609379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Transmembrane effects in the sodium pump system. I. The effect of external potassium and rubidium on the dependence of sodium efflux on sodium concentration in the frog muscle].
    Marakhova II
    Tsitologiia; 1984 Oct; 26(10):1136-44. PubMed ID: 6096993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical temperature transition of K+-Na+ exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Apr; 103(1):87-95. PubMed ID: 7430260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic investigation of K+ efflux during glycerol treatment of muscle.
    Hummel Z
    Physiol Chem Phys Med NMR; 1986; 18(3):207-12. PubMed ID: 3495810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental verification of an expected relation between time of incubation and magnitude of the fast and slow fractions of the sodium efflux from amphibian eggs.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys; 1977; 9(4-5):427-31. PubMed ID: 306631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unitary cause for the exclusion of Na+ and other solutes from living cells, suggested by effluxes of Na+, D-arabinose, and sucrose from normal, dying, and dead muscles.
    Ling GN; Walton CL; Ochsenfeld MM
    J Cell Physiol; 1981 Mar; 106(3):385-98. PubMed ID: 6971295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and slow fractions of K+ flux in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1979 Mar; 98(3):539-52. PubMed ID: 438298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electronic mechanism in the actions of drugs and other cardinal adsorbents. I. Effects of ouabain on the relative affinities of the cell surface beta- and gamma-carboxyl groups for K+, Na+, glycine and other ions.
    Ling GN; Fu YZ
    Physiol Chem Phys Med NMR; 1987; 19(3):209-20. PubMed ID: 3502026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ouabain-insensitive K+ and Na+ fluxes in frog muscle].
    Marikian GG; Ambartsumian TG; Adamian SIa
    Biofizika; 1983; 28(6):1019-21. PubMed ID: 6317055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium transport in astrocytes.
    Walz W; Hertz L
    J Neurosci Res; 1984; 11(3):231-9. PubMed ID: 6737516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.