These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31101432)
1. Implementation of controlling strategy in a biomechanical lower limb model with active muscles for coupling multibody dynamics and finite element analysis. Mo F; Li J; Dan M; Liu T; Behr M J Biomech; 2019 Jun; 91():51-60. PubMed ID: 31101432 [TBL] [Abstract][Full Text] [Related]
2. A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb. Navacchia A; Hume DR; Rullkoetter PJ; Shelburne KB J Biomech; 2019 Feb; 84():94-102. PubMed ID: 30616983 [TBL] [Abstract][Full Text] [Related]
3. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles. Li J; Lu Y; Miller SC; Jin Z; Hua X J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809 [TBL] [Abstract][Full Text] [Related]
4. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling. Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624 [TBL] [Abstract][Full Text] [Related]
5. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces. Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516 [TBL] [Abstract][Full Text] [Related]
6. A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles. Mo F; Li F; Behr M; Xiao Z; Zhang G; Du X Ann Biomed Eng; 2018 Jan; 46(1):86-96. PubMed ID: 29038943 [TBL] [Abstract][Full Text] [Related]
7. A Computationally Efficient Lower Limb Finite Element Musculoskeletal Framework Directly Driven Solely by Inertial Measurement Unit Sensors. Wang S; Hase K; Ota S J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34897395 [TBL] [Abstract][Full Text] [Related]
8. Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. Halloran JP; Ackermann M; Erdemir A; van den Bogert AJ J Biomech; 2010 Oct; 43(14):2810-5. PubMed ID: 20573349 [TBL] [Abstract][Full Text] [Related]
9. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach. Altai Z; Montefiori E; van Veen B; A Paggiosi M; McCloskey EV; Viceconti M; Mazzà C; Li X PLoS One; 2021; 16(2):e0245121. PubMed ID: 33524024 [TBL] [Abstract][Full Text] [Related]
10. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242 [TBL] [Abstract][Full Text] [Related]
11. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation. Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949 [TBL] [Abstract][Full Text] [Related]
12. Modeling and simulation of musculoskeletal system of human lower limb based on tensegrity structure. Wang Z; Yang C; Feng K; Qin X Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1282-1293. PubMed ID: 31553276 [TBL] [Abstract][Full Text] [Related]
13. Validation of a booted finite element model of the WIAMan ATD lower limb in component and whole-body vertical loading impacts with an assessment of the boot influence model on response. Baker WA; Chowdhury MR; Untaroiu CD Traffic Inj Prev; 2018 Jul; 19(5):549-554. PubMed ID: 29381394 [TBL] [Abstract][Full Text] [Related]
14. A Musculoskeletal Multibody Algorithm Based on a Novel Rheonomic Constraints Definition Applied to the Lower Limb. Ruggiero A; Sicilia A J Biomech Eng; 2022 Aug; 144(8):. PubMed ID: 35171239 [TBL] [Abstract][Full Text] [Related]
15. Development and Validation of an Active Muscle Simplified Finite Element Human Body Model in a Standing Posture. Lalwala M; Devane KS; Koya B; Vu LQ; Dolick K; Yates KM; Newby NJ; Somers JT; Gayzik FS; Stitzel JD; Weaver AA Ann Biomed Eng; 2023 Mar; 51(3):632-641. PubMed ID: 36125604 [TBL] [Abstract][Full Text] [Related]
16. A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model. Scarton A; Guiotto A; Malaquias T; Spolaor F; Sinigaglia G; Cobelli C; Jonkers I; Sawacha Z Gait Posture; 2018 Feb; 60():279-285. PubMed ID: 28965863 [TBL] [Abstract][Full Text] [Related]
17. Implementation of reflex loops in a biomechanical finite element model. Salin D; Arnoux PJ; Kayvantash K; Behr M Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1578-82. PubMed ID: 27108871 [TBL] [Abstract][Full Text] [Related]
18. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation. Ezquerro F; Simón A; Prado M; Pérez A Med Eng Phys; 2004 Jan; 26(1):11-22. PubMed ID: 14644594 [TBL] [Abstract][Full Text] [Related]
19. Effects of step length and step frequency on lower-limb muscle function in human gait. Lim YP; Lin YC; Pandy MG J Biomech; 2017 May; 57():1-7. PubMed ID: 28411958 [TBL] [Abstract][Full Text] [Related]
20. A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait. Hainisch R; Kranzl A; Lin YC; Pandy MG; Gfoehler M Comput Methods Biomech Biomed Engin; 2021 Mar; 24(4):349-357. PubMed ID: 32940060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]