These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31101497)

  • 1. Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle.
    Örd M; Venta R; Möll K; Valk E; Loog M
    Mol Cell; 2019 Jul; 75(1):76-89.e3. PubMed ID: 31101497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency In Vivo.
    Bandyopadhyay S; Bhaduri S; Örd M; Davey NE; Loog M; Pryciak PM
    Curr Biol; 2020 Nov; 30(22):4454-4466.e5. PubMed ID: 32976810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5.
    Repetto MV; Winters MJ; Bush A; Reiter W; Hollenstein DM; Ammerer G; Pryciak PM; Colman-Lerner A
    Mol Cell; 2018 Mar; 69(6):938-952.e6. PubMed ID: 29547722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDK signaling via nonconventional CDK phosphorylation sites.
    Valk E; Örd M; Faustova I; Loog M
    Mol Biol Cell; 2023 Nov; 34(12):pe5. PubMed ID: 37906435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cdc6 is sequentially regulated by PP2A-Cdc55, Cdc14, and Sic1 for origin licensing in
    Philip J; Örd M; Silva A; Singh S; Diffley JF; Remus D; Loog M; Ikui AE
    Elife; 2022 Feb; 11():. PubMed ID: 35142288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisite phosphorylation networks as signal processors for Cdk1.
    Kõivomägi M; Ord M; Iofik A; Valk E; Venta R; Faustova I; Kivi R; Balog ER; Rubin SM; Loog M
    Nat Struct Mol Biol; 2013 Dec; 20(12):1415-24. PubMed ID: 24186061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatase 2A negatively regulates mitotic exit in Saccharomyces cerevisiae.
    Wang Y; Ng TY
    Mol Biol Cell; 2006 Jan; 17(1):80-9. PubMed ID: 16079183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability.
    Blanco MG; Matos J; West SC
    Mol Cell; 2014 Apr; 54(1):94-106. PubMed ID: 24631285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function and regulation of budding yeast Swe1 in response to interrupted DNA synthesis.
    Liu H; Wang Y
    Mol Biol Cell; 2006 Jun; 17(6):2746-56. PubMed ID: 16571676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.
    Kõivomägi M; Valk E; Venta R; Iofik A; Lepiku M; Balog ER; Rubin SM; Morgan DO; Loog M
    Nature; 2011 Oct; 480(7375):128-31. PubMed ID: 21993622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative rather than quantitative phosphoregulation shapes the end of meiosis I in budding yeast.
    Celebic D; Polat I; Legros V; Chevreux G; Wassmann K; Touati SA
    EMBO J; 2024 Apr; 43(7):1325-1350. PubMed ID: 38321267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whi5 hypo- and hyper-phosphorylation dynamics control cell-cycle entry and progression.
    Xiao J; Turner JJ; Kõivomägi M; Skotheim JM
    Curr Biol; 2024 Jun; 34(11):2434-2447.e5. PubMed ID: 38749424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zds2p regulates Swe1p-dependent polarized cell growth in Saccharomyces cerevisiae via a novel Cdc55p interaction domain.
    Yasutis K; Vignali M; Ryder M; Tameire F; Dighe SA; Fields S; Kozminski KG
    Mol Biol Cell; 2010 Dec; 21(24):4373-86. PubMed ID: 20980617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian CDC14 phosphatases control exit from stemness in pluripotent cells.
    Villarroya-Beltri C; Martins AFB; García A; Giménez D; Zarzuela E; Novo M; Del Álamo C; González-Martínez J; Bonel-Pérez GC; Díaz I; Guillamot M; Chiesa M; Losada A; Graña-Castro O; Rovira M; Muñoz J; Salazar-Roa M; Malumbres M
    EMBO J; 2023 Jan; 42(1):e111251. PubMed ID: 36326833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Biology: Deciphering the ABCs of SLiMs in G1-CDK Signaling.
    Roy J; Cyert MS
    Curr Biol; 2020 Nov; 30(22):R1382-R1385. PubMed ID: 33202241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDK Substrate Phosphorylation and Ordering the Cell Cycle.
    Swaffer MP; Jones AW; Flynn HR; Snijders AP; Nurse P
    Cell; 2016 Dec; 167(7):1750-1761.e16. PubMed ID: 27984725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live-cell imaging defines a threshold in CDK activity at the G2/M transition.
    Sugiyama H; Goto Y; Kondo Y; Coudreuse D; Aoki K
    Dev Cell; 2024 Feb; 59(4):545-557.e4. PubMed ID: 38228139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic screen reveals new elements acting at the G2/M cell cycle control.
    Navarro FJ; Nurse P
    Genome Biol; 2012 May; 13(5):R36. PubMed ID: 22624651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of Lte1 by Cdk prevents polarized growth during mitotic arrest in S. cerevisiae.
    Geymonat M; Spanos A; Jensen S; Sedgwick SG
    J Cell Biol; 2010 Dec; 191(6):1097-112. PubMed ID: 21149565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery.
    Pagliuca FW; Collins MO; Lichawska A; Zegerman P; Choudhary JS; Pines J
    Mol Cell; 2011 Aug; 43(3):406-17. PubMed ID: 21816347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.