These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31101596)

  • 1. Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope.
    Dascalu A; David EO
    EBioMedicine; 2019 May; 43():107-113. PubMed ID: 31101596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: Laboratory and prospective observational studies.
    Walker BN; Rehg JM; Kalra A; Winters RM; Drews P; Dascalu J; David EO; Dascalu A
    EBioMedicine; 2019 Feb; 40():176-183. PubMed ID: 30674442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-melanoma skin cancer diagnosis: a comparison between dermoscopic and smartphone images by unified visual and sonification deep learning algorithms.
    Dascalu A; Walker BN; Oron Y; David EO
    J Cancer Res Clin Oncol; 2022 Sep; 148(9):2497-2505. PubMed ID: 34546412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions.
    Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Rosenberger A; Haenssle HA
    Eur J Cancer; 2020 Aug; 135():39-46. PubMed ID: 32534243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.
    Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC;
    J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma.
    Menzies SW; Bischof L; Talbot H; Gutenev A; Avramidis M; Wong L; Lo SK; Mackellar G; Skladnev V; McCarthy W; Kelly J; Cranney B; Lye P; Rabinovitz H; Oliviero M; Blum A; Varol A; De'Ambrosis B; McCleod R; Koga H; Grin C; Braun R; Johr R
    Arch Dermatol; 2005 Nov; 141(11):1388-96. PubMed ID: 16301386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
    Alsaade FW; Aldhyani THH; Al-Adhaileh MH
    Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma.
    Rajpara SM; Botello AP; Townend J; Ormerod AD
    Br J Dermatol; 2009 Sep; 161(3):591-604. PubMed ID: 19302072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
    Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I
    Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions.
    Phillips M; Marsden H; Jaffe W; Matin RN; Wali GN; Greenhalgh J; McGrath E; James R; Ladoyanni E; Bewley A; Argenziano G; Palamaras I
    JAMA Netw Open; 2019 Oct; 2(10):e1913436. PubMed ID: 31617929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.
    Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC;
    J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior skin cancer classification by the combination of human and artificial intelligence.
    Hekler A; Utikal JS; Enk AH; Hauschild A; Weichenthal M; Maron RC; Berking C; Haferkamp S; Klode J; Schadendorf D; Schilling B; Holland-Letz T; Izar B; von Kalle C; Fröhling S; Brinker TJ;
    Eur J Cancer; 2019 Oct; 120():114-121. PubMed ID: 31518967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning algorithms for melanoma detection using dermoscopic images: A systematic review and meta-analysis.
    Ye Z; Zhang D; Zhao Y; Chen M; Wang H; Seery S; Qu Y; Xue P; Jiang Y
    Artif Intell Med; 2024 Sep; 155():102934. PubMed ID: 39088883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Holland-Letz T; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 May; 113():47-54. PubMed ID: 30981091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided dermoscopy for diagnosis of melanoma.
    Barzegari M; Ghaninezhad H; Mansoori P; Taheri A; Naraghi ZS; Asgari M
    BMC Dermatol; 2005 Jul; 5():8. PubMed ID: 16000171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.
    Premaladha J; Ravichandran KS
    J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a Skin-Lesion Image-Matching Algorithm Based on Computer Vision Technology.
    Chen RH; Snorrason M; Enger SM; Mostafa E; Ko JM; Aoki V; Bowling J
    Telemed J E Health; 2016 Jan; 22(1):45-50. PubMed ID: 26218353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin Cancer Detection in Diverse Skin Tones by Machine Learning Combining Audio and Visual Convolutional Neural Networks.
    Walker BN; Blalock TW; Leibowitz R; Oron Y; Dascalu D; David EO; Dascalu A
    Oncology; 2024 Sep; ():1-8. PubMed ID: 39312888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders.
    Han SS; Park I; Eun Chang S; Lim W; Kim MS; Park GH; Chae JB; Huh CH; Na JI
    J Invest Dermatol; 2020 Sep; 140(9):1753-1761. PubMed ID: 32243882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.