BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31101674)

  • 1. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting.
    Donovan BT; Huynh A; Ball DA; Patel HP; Poirier MG; Larson DR; Ferguson ML; Lenstra TL
    EMBO J; 2019 Jun; 38(12):. PubMed ID: 31101674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting.
    Brouwer I; Kerklingh E; van Leeuwen F; Lenstra TL
    Nat Struct Mol Biol; 2023 May; 30(5):692-702. PubMed ID: 37127821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Gal4-directed transcription activation using Tra1 mutants selectively defective for interaction with Gal4.
    Lin L; Chamberlain L; Zhu LJ; Green MR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):1997-2002. PubMed ID: 22308403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription.
    Lenstra TL; Coulon A; Chow CC; Larson DR
    Mol Cell; 2015 Nov; 60(4):597-610. PubMed ID: 26549684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.
    Floer M; Wang X; Prabhu V; Berrozpe G; Narayan S; Spagna D; Alvarez D; Kendall J; Krasnitz A; Stepansky A; Hicks J; Bryant GO; Ptashne M
    Cell; 2010 Apr; 141(3):407-18. PubMed ID: 20434983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene activation by dissociation of an inhibitor from a transcriptional activation domain.
    Jiang F; Frey BR; Evans ML; Friel JC; Hopper JE
    Mol Cell Biol; 2009 Oct; 29(20):5604-10. PubMed ID: 19651897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A yeast catabolic enzyme controls transcriptional memory.
    Zacharioudakis I; Gligoris T; Tzamarias D
    Curr Biol; 2007 Dec; 17(23):2041-6. PubMed ID: 17997309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into Bidirectional Gene Expression Control Using the Canonical GAL1/GAL10 Promoter.
    Elison GL; Xue Y; Song R; Acar M
    Cell Rep; 2018 Oct; 25(3):737-748.e4. PubMed ID: 30332652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosome disruption by transcription factor binding in yeast.
    Morse RH
    Science; 1993 Dec; 262(5139):1563-6. PubMed ID: 8248805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
    Egriboz O; Goswami S; Tao X; Dotts K; Schaeffer C; Pilauri V; Hopper JE
    Mol Cell Biol; 2013 Sep; 33(18):3667-74. PubMed ID: 23858060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast.
    Mehta GD; Ball DA; Eriksson PR; Chereji RV; Clark DJ; McNally JG; Karpova TS
    Mol Cell; 2018 Dec; 72(5):875-887.e9. PubMed ID: 30318444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gal11p dosage-compensates transcriptional activator deletions via Taf14p.
    Lim MK; Tang V; Le Saux A; Schüller J; Bongards C; Lehming N
    J Mol Biol; 2007 Nov; 374(1):9-23. PubMed ID: 17919657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structure of Saccharomyces cerevisiae Gal1p, a bifunctional galactokinase and transcriptional inducer.
    Thoden JB; Sellick CA; Timson DJ; Reece RJ; Holden HM
    J Biol Chem; 2005 Nov; 280(44):36905-11. PubMed ID: 16115868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal expression of yeast GAL genes is controlled by a long non-coding RNA and a bifunctional galactokinase.
    Zacharioudakis I; Tzamarias D
    Biochem Biophys Res Commun; 2017 Apr; 486(1):63-69. PubMed ID: 28254434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unexpected role for ubiquitylation of a transcriptional activator.
    Arndt K; Winston F
    Cell; 2005 Mar; 120(6):733-4. PubMed ID: 15797373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How transcription factor binding controls transcriptional bursting dynamics: A single-molecule view.
    Chong S; Yoshida S
    Mol Cell; 2024 Mar; 84(6):997-999. PubMed ID: 38518750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gal4 turnover and transcription activation.
    Collins GA; Lipford JR; Deshaies RJ; Tansey WP
    Nature; 2009 Oct; 461(7265):E7; discussion E8. PubMed ID: 19812621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosomal proofreading of activator-promoter interactions.
    Shelansky R; Boeger H
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2456-2461. PubMed ID: 31964832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor exchange enables prolonged transcriptional bursts.
    Pomp W; Meeussen JVW; Lenstra TL
    Mol Cell; 2024 Mar; 84(6):1036-1048.e9. PubMed ID: 38377994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.