These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 31101674)

  • 61. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex.
    Kwon H; Imbalzano AN; Khavari PA; Kingston RE; Green MR
    Nature; 1994 Aug; 370(6489):477-81. PubMed ID: 8047169
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nucleosome cores and histone H1 in the binding of GAL4 derivatives and the reactivation of transcription from nucleosome templates in vitro.
    Juan LJ; Walter PP; Taylor IC; Kingston RE; Workman JL
    Cold Spring Harb Symp Quant Biol; 1993; 58():213-23. PubMed ID: 7956032
    [No Abstract]   [Full Text] [Related]  

  • 63. The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing.
    Muratani M; Kung C; Shokat KM; Tansey WP
    Cell; 2005 Mar; 120(6):887-99. PubMed ID: 15797387
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex.
    Workman JL; Kingston RE
    Science; 1992 Dec; 258(5089):1780-4. PubMed ID: 1465613
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A quantitative model of transcription factor-activated gene expression.
    Kim HD; O'Shea EK
    Nat Struct Mol Biol; 2008 Nov; 15(11):1192-8. PubMed ID: 18849996
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Positive Feedback Genetic Circuit Incorporating a Constitutively Active Mutant Gal3 into Yeast GAL Induction System.
    Ryo S; Ishii J; Matsuno T; Nakamura Y; Matsubara D; Tominaga M; Kondo A
    ACS Synth Biol; 2017 Jun; 6(6):928-935. PubMed ID: 28324652
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes.
    Vignali M; Steger DJ; Neely KE; Workman JL
    EMBO J; 2000 Jun; 19(11):2629-40. PubMed ID: 10835360
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of Antisense Transcription by NuA4 Histone Acetyltransferase and Other Chromatin Regulatory Factors.
    Uprety B; Kaja A; Ferdoush J; Sen R; Bhaumik SR
    Mol Cell Biol; 2016 Jan; 36(6):992-1006. PubMed ID: 26755557
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Variant histone H2A.Z, but not the HMG proteins Nhp6a/b, is essential for the recruitment of Swi/Snf, Mediator, and SAGA to the yeast GAL1 UAS(G).
    Lemieux K; Larochelle M; Gaudreau L
    Biochem Biophys Res Commun; 2008 May; 369(4):1103-7. PubMed ID: 18331823
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae.
    Hon T; Lee HC; Hu Z; Iyer VR; Zhang L
    Genetics; 2005 Mar; 169(3):1343-52. PubMed ID: 15654089
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genome-wide location and function of DNA binding proteins.
    Ren B; Robert F; Wyrick JJ; Aparicio O; Jennings EG; Simon I; Zeitlinger J; Schreiber J; Hannett N; Kanin E; Volkert TL; Wilson CJ; Bell SP; Young RA
    Science; 2000 Dec; 290(5500):2306-9. PubMed ID: 11125145
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A negative feedback loop at the nuclear periphery regulates GAL gene expression.
    Green EM; Jiang Y; Joyner R; Weis K
    Mol Biol Cell; 2012 Apr; 23(7):1367-75. PubMed ID: 22323286
    [TBL] [Abstract][Full Text] [Related]  

  • 73. FACT interacts with Set3 HDAC and fine-tunes GAL1 transcription in response to environmental stimulation.
    Leng H; Liu S; Lei Y; Tang Y; Gu S; Hu J; Chen S; Feng J; Li Q
    Nucleic Acids Res; 2021 Jun; 49(10):5502-5519. PubMed ID: 33963860
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The past determines the future: sugar source history and transcriptional memory.
    Bheda P; Kirmizis A; Schneider R
    Curr Genet; 2020 Dec; 66(6):1029-1035. PubMed ID: 32686056
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gal4/UAS transgenic tools and their application to zebrafish.
    Halpern ME; Rhee J; Goll MG; Akitake CM; Parsons M; Leach SD
    Zebrafish; 2008; 5(2):97-110. PubMed ID: 18554173
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transcription factor clusters enable target search but do not contribute to target gene activation.
    Meeussen JVW; Pomp W; Brouwer I; de Jonge WJ; Patel HP; Lenstra TL
    Nucleic Acids Res; 2023 Jun; 51(11):5449-5468. PubMed ID: 36987884
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes.
    Upadhyay SK; Sasidhar YU
    J Comput Aided Mol Des; 2012 Jul; 26(7):847-64. PubMed ID: 22639079
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Contribution of amino acid side chains to sugar binding specificity in a galactokinase, Gal1p, and a transcriptional inducer, Gal3p.
    Sellick CA; Reece RJ
    J Biol Chem; 2006 Jun; 281(25):17150-17155. PubMed ID: 16603548
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nucleosomes accelerate transcription factor dissociation.
    Luo Y; North JA; Rose SD; Poirier MG
    Nucleic Acids Res; 2014 Mar; 42(5):3017-27. PubMed ID: 24353316
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Single gene analysis in yeast suggests nonequilibrium regulatory dynamics for transcription.
    Shelansky R; Abrahamsson S; Brown CR; Doody M; Lenstra TL; Larson DR; Boeger H
    Nat Commun; 2024 Jul; 15(1):6226. PubMed ID: 39043639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.