BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31101710)

  • 21. Assessment of viral inactivation during pH 3.3 pepsin digestion and caprylic acid treatment of antivenoms.
    Burnouf T; Terpstra F; Habib G; Seddik S
    Biologicals; 2007 Oct; 35(4):329-34. PubMed ID: 17363271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new liquid intravenous immunoglobulin with three dedicated virus reduction steps: virus and prion reduction capacity.
    Poelsler G; Berting A; Kindermann J; Spruth M; Hämmerle T; Teschner W; Schwarz HP; Kreil TR
    Vox Sang; 2008 Apr; 94(3):184-192. PubMed ID: 18167162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins.
    Brorson K; Krejci S; Lee K; Hamilton E; Stein K; Xu Y
    Biotechnol Bioeng; 2003 May; 82(3):321-9. PubMed ID: 12599259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proceedings of the 2009 Viral Clearance Symposium.
    Miesegaes G; Bailey M; Willkommen H; Chen Q; Roush D; Blümel J; Brorson K
    Dev Biol (Basel); 2010; 133():3-101. PubMed ID: 21516942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viral safety of Nanogam, a new 15 nm-filtered liquid immunoglobulin product.
    Terpstra FG; Parkkinen J; Tölö H; Koenderman AH; Ter Hart HG; von Bonsdorff L; Törmä E; van Engelenburg FA
    Vox Sang; 2006 Jan; 90(1):21-32. PubMed ID: 16359352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of operating parameters for XMuLV inactivation by low pH treatment.
    Chinniah S; Hinckley P; Connell-Crowley L
    Biotechnol Prog; 2016; 32(1):89-97. PubMed ID: 26488618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathogen Safety of a New Intravenous Immune Globulin 10% Liquid.
    Radomski KU; Lattner G; Schmidt T; Römisch J
    BioDrugs; 2017 Apr; 31(2):125-134. PubMed ID: 28236170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low pH, caprylate incubation as a second viral inactivation step in the manufacture of albumin. Parametric and validation studies.
    Johnston A; Uren E; Johnstone D; Wu J
    Biologicals; 2003 Sep; 31(3):213-21. PubMed ID: 12935811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viral validation design of a manufacturing process.
    Larzul D
    Dev Biol Stand; 1999; 99():139-50. PubMed ID: 10404885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration.
    Troccoli NM; McIver J; Losikoff A; Poiley J
    Biologicals; 1998 Dec; 26(4):321-9. PubMed ID: 10403036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proceedings of the 2019 Viral Clearance Symposium, Session 5: Viral Inactivation.
    Ma J
    PDA J Pharm Sci Technol; 2022; 76(4):339-348. PubMed ID: 34911831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of machine learning methods to pathogen safety evaluation in biological manufacturing processes.
    Panjwani S; Cui I; Spetsieris K; Mleczko M; Wang W; Zou JX; Anwaruzzaman M; Liu S; Canales R; Hesse O
    Biotechnol Prog; 2021 May; 37(3):e3135. PubMed ID: 33527773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proceedings of the 2019 Viral Clearance Symposium, Session 8. Conference Summary: Key Discussion and Outcomes, Pending Questions, and Proposed Experiments and Actions.
    Bolton G
    PDA J Pharm Sci Technol; 2022; 76(4):362-367. PubMed ID: 34911826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.
    Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV
    Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of biopharmaceutical purification processes for virus clearance evaluation.
    Darling A
    Mol Biotechnol; 2002 May; 21(1):57-83. PubMed ID: 11989660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficacy of inactivation of viral contaminants in hyperimmune horse plasma against botulinum toxin by low pH alone and combined with pepsin digestion.
    Torgeman A; Mador N; Dorozko M; Lifshitz A; Eschar N; White MD; Wolf DG; Epstein E
    Biologicals; 2017 Jul; 48():24-27. PubMed ID: 28633975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partitioning and inactivation of viruses by the caprylic acid precipitation followed by a terminal pasteurization in the manufacturing process of horse immunoglobulins.
    Mpandi M; Schmutz P; Legrand E; Duc R; Geinoz J; Henzelin-Nkubana C; Giorgia S; Clerc O; Genoud D; Weber T
    Biologicals; 2007 Oct; 35(4):335-41. PubMed ID: 17470396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viral clearance capability of monoclonal antibody purification.
    Cai K; Anderson J; Utiger E; Ferreira G
    Biologicals; 2024 Feb; 85():101751. PubMed ID: 38387156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathogen safety of human C1 esterase inhibitor concentrate.
    Gröner A; Nowak T; Schäfer W
    Transfusion; 2012 Oct; 52(10):2104-12. PubMed ID: 22413956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proceedings of the 2017 Viral Clearance Symposium, Session 4: Submission Strategies.
    Schwantes A; Specht R; Chen Q
    PDA J Pharm Sci Technol; 2018; 72(5):498-510. PubMed ID: 30030357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.