These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31101809)

  • 1. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures.
    Zaitsev K; Bambouskova M; Swain A; Artyomov MN
    Nat Commun; 2019 May; 10(1):2209. PubMed ID: 31101809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.
    Gaujoux R; Seoighe C
    Infect Genet Evol; 2012 Jul; 12(5):913-21. PubMed ID: 21930246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
    Tiong KL; Luzhbin D; Yeang CH
    BMC Bioinformatics; 2024 Jun; 25(1):209. PubMed ID: 38867193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.
    Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L
    PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues.
    Wang N; Chen L; Wang Y
    Methods Mol Biol; 2018; 1751():223-236. PubMed ID: 29508301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.
    Wang C; Lin Y; Li S; Guan J
    BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational deconvolution of transcriptomics data from mixed cell populations.
    Avila Cobos F; Vandesompele J; Mestdagh P; De Preter K
    Bioinformatics; 2018 Jun; 34(11):1969-1979. PubMed ID: 29351586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deblender: a semi-/unsupervised multi-operational computational method for complete deconvolution of expression data from heterogeneous samples.
    Dimitrakopoulou K; Wik E; Akslen LA; Jonassen I
    BMC Bioinformatics; 2018 Nov; 19(1):408. PubMed ID: 30404611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved cell composition deconvolution method of bulk gene expression profiles to quantify subsets of immune cells.
    Chiu YJ; Hsieh YH; Huang YH
    BMC Med Genomics; 2019 Dec; 12(Suppl 8):169. PubMed ID: 31856824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets.
    Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR
    Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Analysis of Cell Mixtures Deconvolution and Gene Signatures Generated for Blood, Immune and Cancer Cells.
    Alonso-Moreda N; Berral-González A; De La Rosa E; González-Velasco O; Sánchez-Santos JM; De Las Rivas J
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational de novo discovery of distinguishing genes for biological processes and cell types in complex tissues.
    Newberg LA; Chen X; Kodira CD; Zavodszky MI
    PLoS One; 2018; 13(3):e0193067. PubMed ID: 29494600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-directed method for cell-type identification and separation of gene expression microarrays.
    Zuckerman NS; Noam Y; Goldsmith AJ; Lee PP
    PLoS Comput Biol; 2013; 9(8):e1003189. PubMed ID: 23990767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking of cell type deconvolution pipelines for transcriptomics data.
    Avila Cobos F; Alquicira-Hernandez J; Powell JE; Mestdagh P; De Preter K
    Nat Commun; 2020 Nov; 11(1):5650. PubMed ID: 33159064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deconvolution of heterogeneous tumor samples using partial reference signals.
    Qin Y; Zhang W; Sun X; Nan S; Wei N; Wu HJ; Zheng X
    PLoS Comput Biol; 2020 Nov; 16(11):e1008452. PubMed ID: 33253170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational expression deconvolution in a complex mammalian organ.
    Wang M; Master SR; Chodosh LA
    BMC Bioinformatics; 2006 Jul; 7():328. PubMed ID: 16817968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-Seq Data.
    Chen Z; Quan L; Huang A; Zhao Q; Yuan Y; Yuan X; Shen Q; Shang J; Ben Y; Qin FX; Wu A
    Front Immunol; 2018; 9():1286. PubMed ID: 29922297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive evaluation of deconvolution methods for human brain gene expression.
    Sutton GJ; Poppe D; Simmons RK; Walsh K; Nawaz U; Lister R; Gagnon-Bartsch JA; Voineagu I
    Nat Commun; 2022 Mar; 13(1):1358. PubMed ID: 35292647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico microdissection of microarray data from heterogeneous cell populations.
    Lähdesmäki H; Shmulevich L; Dunmire V; Yli-Harja O; Zhang W
    BMC Bioinformatics; 2005 Mar; 6():54. PubMed ID: 15766384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mutual information: detecting and evaluating dependencies between variables.
    Steuer R; Kurths J; Daub CO; Weise J; Selbig J
    Bioinformatics; 2002; 18 Suppl 2():S231-40. PubMed ID: 12386007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.