These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31101997)

  • 21. Polyamine function in archaea and bacteria.
    Michael AJ
    J Biol Chem; 2018 Nov; 293(48):18693-18701. PubMed ID: 30254075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct binding of TFEα opens DNA binding cleft of RNA polymerase.
    Jun SH; Hyun J; Cha JS; Kim H; Bartlett MS; Cho HS; Murakami KS
    Nat Commun; 2020 Nov; 11(1):6123. PubMed ID: 33257704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro.
    Grohmann D; Hirtreiter A; Werner F
    Biochem J; 2009 Jul; 421(3):339-43. PubMed ID: 19492989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indole-3-glycerol-phosphate synthase is recognized by a cold-inducible group II chaperonin in Thermococcus kodakarensis.
    Gao L; Danno A; Fujii S; Fukuda W; Imanaka T; Fujiwara S
    Appl Environ Microbiol; 2012 Jun; 78(11):3806-15. PubMed ID: 22447592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical characterization of a highly active ADP-dependent phosphofructokinase from Thermococcus kodakarensis.
    Shakir NA; Bibi T; Aslam M; Rashid N
    J Biosci Bioeng; 2020 Jan; 129(1):6-15. PubMed ID: 31337538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct Modified Nucleosides in tRNA
    Hirata A; Suzuki T; Nagano T; Fujii D; Okamoto M; Sora M; Lowe TM; Kanai T; Atomi H; Suzuki T; Hori H
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular bases of thermophily in hyperthermophiles.
    Imanaka T
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(9):587-602. PubMed ID: 22075760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanisms of archaeal RNA polymerase.
    Grohmann D; Hirtreiter A; Werner F
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):12-7. PubMed ID: 19143594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis.
    Nagata M; Ishino S; Yamagami T; Ogino H; Simons JR; Kanai T; Atomi H; Ishino Y
    Nucleic Acids Res; 2017 Oct; 45(18):10693-10705. PubMed ID: 28977567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FttA is a CPSF73 homologue that terminates transcription in Archaea.
    Sanders TJ; Wenck BR; Selan JN; Barker MP; Trimmer SA; Walker JE; Santangelo TJ
    Nat Microbiol; 2020 Apr; 5(4):545-553. PubMed ID: 32094586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Architecture and characterization of a thermostable MoxR family AAA(+) ATPase from Thermococcus kodakarensis KOD1.
    Pham BP; Lee S; Jia B; Kwak JM; Cheong GW
    Extremophiles; 2014 May; 18(3):537-44. PubMed ID: 24638259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel inorganic pyrophosphatase in Thermococcus onnurineus NA1.
    Lee HS; Cho Y; Kim YJ; Lho TO; Cha SS; Lee JH; Kang SG
    FEMS Microbiol Lett; 2009 Nov; 300(1):68-74. PubMed ID: 19744243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different roles of two transcription factor B proteins in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Hidese R; Nishikawa R; Gao L; Katano M; Imai T; Kato S; Kanai T; Atomi H; Imanaka T; Fujiwara S
    Extremophiles; 2014 May; 18(3):573-88. PubMed ID: 24627188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression.
    Scott KA; Williams SA; Santangelo TJ
    Methods Enzymol; 2021; 659():243-273. PubMed ID: 34752288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural evolution of multisubunit RNA polymerases.
    Werner F
    Trends Microbiol; 2008 Jun; 16(6):247-50. PubMed ID: 18468900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis.
    Kuba Y; Ishino S; Yamagami T; Tokuhara M; Kanai T; Fujikane R; Daiyasu H; Atomi H; Ishino Y
    Genes Cells; 2012 Nov; 17(11):923-37. PubMed ID: 23078585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research.
    Rashid N; Aslam M
    Folia Microbiol (Praha); 2020 Feb; 65(1):67-78. PubMed ID: 31286382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.