These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31102315)
41. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Brown SE; Cao AT; Dobson P; Hines ER; Akhurst RJ; East PD Appl Environ Microbiol; 2006 Feb; 72(2):1653-62. PubMed ID: 16461722 [TBL] [Abstract][Full Text] [Related]
42. Abd El-Raheem AM; Abdelazeem Elmasry AM; Elbrense H; Vergara-Pineda S Pak J Biol Sci; 2022 Jun; 25(7):586-601. PubMed ID: 36098165 [TBL] [Abstract][Full Text] [Related]
44. Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria. Hirschmann M; Grundmann F; Bode HB Environ Microbiol; 2017 Oct; 19(10):4080-4090. PubMed ID: 28654175 [TBL] [Abstract][Full Text] [Related]
45. Flagellar Regulation and Virulence in the Entomopathogenic Bacteria-Xenorhabdus nematophila and Photorhabdus luminescens. Givaudan A; Lanois A Curr Top Microbiol Immunol; 2017; 402():39-51. PubMed ID: 28091933 [TBL] [Abstract][Full Text] [Related]
46. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. Gulcu B; Hazir S; Kaya HK J Invertebr Pathol; 2012 Jul; 110(3):326-33. PubMed ID: 22446508 [TBL] [Abstract][Full Text] [Related]
47. Three Novel Xenorhabdus-Steinernema Associations and Evidence of Strains of X. khoisanae Switching Between Different Clades. Dreyer J; Malan AP; Dicks LMT Curr Microbiol; 2017 Aug; 74(8):938-942. PubMed ID: 28526895 [TBL] [Abstract][Full Text] [Related]
48. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Lengyel K; Lang E; Fodor A; Szállás E; Schumann P; Stackebrandt E Syst Appl Microbiol; 2005 Mar; 28(2):115-22. PubMed ID: 15830803 [TBL] [Abstract][Full Text] [Related]
49. Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production. Morales-Soto N; Gaudriault S; Ogier JC; Thappeta KR; Forst S FEMS Microbiol Lett; 2012 Aug; 333(1):69-76. PubMed ID: 22612724 [TBL] [Abstract][Full Text] [Related]
50. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Tailliez P; Pagès S; Ginibre N; Boemare N Int J Syst Evol Microbiol; 2006 Dec; 56(Pt 12):2805-2818. PubMed ID: 17158981 [TBL] [Abstract][Full Text] [Related]
51. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Böszörményi E; Ersek T; Fodor A; Fodor AM; Földes LS; Hevesi M; Hogan JS; Katona Z; Klein MG; Kormány A; Pekár S; Szentirmai A; Sztaricskai F; Taylor RA J Appl Microbiol; 2009 Sep; 107(3):746-59. PubMed ID: 19320949 [TBL] [Abstract][Full Text] [Related]
52. Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Sicard M; Ramone H; Le Brun N; Pagès S; Moulia C Naturwissenschaften; 2005 Oct; 92(10):472-6. PubMed ID: 16163505 [TBL] [Abstract][Full Text] [Related]
54. Entomopathogenic bacteria as a source of secondary metabolites. Bode HB Curr Opin Chem Biol; 2009 Apr; 13(2):224-30. PubMed ID: 19345136 [TBL] [Abstract][Full Text] [Related]
55. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Shi YM; Bode HB Nat Prod Rep; 2018 Apr; 35(4):309-335. PubMed ID: 29359226 [TBL] [Abstract][Full Text] [Related]
56. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Somvanshi VS; Lang E; Ganguly S; Swiderski J; Saxena AK; Stackebrandt E Syst Appl Microbiol; 2006 Nov; 29(7):519-25. PubMed ID: 16459045 [TBL] [Abstract][Full Text] [Related]
57. Neutral loss fragmentation pattern based screening for arginine-rich natural products in Xenorhabdus and Photorhabdus. Fuchs SW; Sachs CC; Kegler C; Nollmann FI; Karas M; Bode HB Anal Chem; 2012 Aug; 84(16):6948-55. PubMed ID: 22873683 [TBL] [Abstract][Full Text] [Related]
58. Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. Bozhüyük KAJ; Zhou Q; Engel Y; Heinrich A; Pérez A; Bode HB Curr Top Microbiol Immunol; 2017; 402():55-79. PubMed ID: 28091935 [TBL] [Abstract][Full Text] [Related]
59. Bioactive natural products from novel microbial sources. Challinor VL; Bode HB Ann N Y Acad Sci; 2015 Sep; 1354():82-97. PubMed ID: 26509922 [TBL] [Abstract][Full Text] [Related]
60. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Tóth T; Lakatos T Int J Syst Evol Microbiol; 2008 Nov; 58(Pt 11):2579-81. PubMed ID: 18984696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]