BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31102467)

  • 1. Positron Emission Tomography Imaging of [
    Billington S; Shoner S; Lee S; Clark-Snustad K; Pennington M; Lewis D; Muzi M; Rene S; Lee J; Nguyen TB; Kumar V; Ishida K; Chen L; Chu X; Lai Y; Salphati L; Hop CECA; Xiao G; Liao M; Unadkat JD
    Clin Pharmacol Ther; 2019 Nov; 106(5):1056-1066. PubMed ID: 31102467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successful Prediction of In Vivo Hepatobiliary Clearances and Hepatic Concentrations of Rosuvastatin Using Sandwich-Cultured Rat Hepatocytes, Transporter-Expressing Cell Lines, and Quantitative Proteomics.
    Ishida K; Ullah M; Tóth B; Juhasz V; Unadkat JD
    Drug Metab Dispos; 2018 Jan; 46(1):66-74. PubMed ID: 29084782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of rosuvastatin as an organic anion transporting polypeptide (OATP) probe substrate: in vitro transport and in vivo disposition in cynomolgus monkeys.
    Shen H; Su H; Liu T; Yao M; Mintier G; Li L; Fancher RM; Iyer R; Marathe P; Lai Y; Rodrigues AD
    J Pharmacol Exp Ther; 2015 May; 353(2):380-91. PubMed ID: 25740896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Transporter-Mediated Rosuvastatin Hepatic Uptake Clearance and Drug Interaction in Humans Using Proteomics-Informed REF Approach.
    Kumar V; Yin M; Ishida K; Salphati L; Hop CECA; Rowbottom C; Xiao G; Lai Y; Mathias A; Chu X; Humphreys WG; Liao M; Nerada Z; Szilvásy N; Heyward S; Unadkat JD
    Drug Metab Dispos; 2021 Feb; 49(2):159-168. PubMed ID: 33051248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of organic anion transporting polypeptide in the hepatic uptake of telmisartan in rats: PET studies with [¹¹C]telmisartan.
    Takashima T; Hashizume Y; Katayama Y; Murai M; Wada Y; Maeda K; Sugiyama Y; Watanabe Y
    Mol Pharm; 2011 Oct; 8(5):1789-98. PubMed ID: 21812443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Hepatobiliary Clearances and Hepatic Concentrations of Transported Drugs in Humans Using Rosuvastatin as a Model Drug.
    Storelli F; Li CY; Sachar M; Kumar V; Heyward S; Sáfár Z; Kis E; Unadkat JD
    Clin Pharmacol Ther; 2022 Sep; 112(3):593-604. PubMed ID: 35152400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing Estimation of Hepatobiliary Clearances in Physiologically Based Pharmacokinetic Models of Rosuvastatin Using Human Hepatic Concentrations.
    Wang L; Zhu Z; Tran D; Seo SK; Pan X
    Pharm Res; 2021 Dec; 38(12):2035-2046. PubMed ID: 34862570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin.
    Bi YA; Qiu X; Rotter CJ; Kimoto E; Piotrowski M; Varma MV; Ei-Kattan AF; Lai Y
    Biopharm Drug Dispos; 2013 Nov; 34(8):452-61. PubMed ID: 23996477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Improved Pharmacokinetic Models for the Analysis of Transporter-Mediated Hepatic Disposition of Drug Molecules with Positron Emission Tomography.
    Hernández Lozano I; Karch R; Bauer M; Blaickner M; Matsuda A; Wulkersdorfer B; Hacker M; Zeitlinger M; Langer O
    AAPS J; 2019 Apr; 21(4):61. PubMed ID: 31037511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PET imaging of Oatp-mediated hepatobiliary transport of [(11)C] rosuvastatin in the rat.
    He J; Yu Y; Prasad B; Link J; Miyaoka RS; Chen X; Unadkat JD
    Mol Pharm; 2014 Aug; 11(8):2745-54. PubMed ID: 24957348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solitary Inhibition of the Breast Cancer Resistance Protein Efflux Transporter Results in a Clinically Significant Drug-Drug Interaction with Rosuvastatin by Causing up to a 2-Fold Increase in Statin Exposure.
    Elsby R; Martin P; Surry D; Sharma P; Fenner K
    Drug Metab Dispos; 2016 Mar; 44(3):398-408. PubMed ID: 26700956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs.
    Mita S; Suzuki H; Akita H; Hayashi H; Onuki R; Hofmann AF; Sugiyama Y
    Drug Metab Dispos; 2006 Sep; 34(9):1575-81. PubMed ID: 16760228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a potential transporter-mediated drug interaction between rosuvastatin and pradigastat, a novel DGAT-1 inhibitor.
    Kulmatycki K; Hanna I; Meyers D; Salunke A; Movva A; Majumdar T; Natrillo A; Vapurcuyan A; Rebello S; Sunkara G; Chen J
    Int J Clin Pharmacol Ther; 2015 May; 53(5):345-55. PubMed ID: 25740267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse NTCP-Mediated Rosuvastatin Uptake In Vitro and in Slc10a1-Deficient Mice.
    Russell LE; DeGorter MK; Ho RH; Leake BF; Schmerk CL; Mansell SE; Kim RB
    AAPS J; 2021 Jan; 23(1):17. PubMed ID: 33404849
    [No Abstract]   [Full Text] [Related]  

  • 15. Ticagrelor Increases Exposure to the Breast Cancer Resistance Protein Substrate Rosuvastatin.
    Lehtisalo M; Tarkiainen EK; Neuvonen M; Holmberg M; Kiiski JI; Lapatto-Reiniluoto O; Filppula AM; Kurkela M; Backman JT; Niemi M
    Clin Pharmacol Ther; 2024 Jan; 115(1):71-79. PubMed ID: 37786998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coproporphyrins in Plasma and Urine Can Be Appropriate Clinical Biomarkers to Recapitulate Drug-Drug Interactions Mediated by Organic Anion Transporting Polypeptide Inhibition.
    Lai Y; Mandlekar S; Shen H; Holenarsipur VK; Langish R; Rajanna P; Murugesan S; Gaud N; Selvam S; Date O; Cheng Y; Shipkova P; Dai J; Humphreys WG; Marathe P
    J Pharmacol Exp Ther; 2016 Sep; 358(3):397-404. PubMed ID: 27317801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Hepatocyte-Like Cells with Functional Drug Transporters Directly-Reprogrammed from Mouse Fibroblasts and their Potential in Drug Disposition and Toxicology.
    Wu ZT; Yao D; Ji SY; Ni X; Gao YM; Hui LJ; Pan GY
    Cell Physiol Biochem; 2016; 38(5):1815-30. PubMed ID: 27160211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical Synthesis of [
    Nakaoka T; Uetake Y; Kaneko KI; Niwa T; Ochiai H; Irie S; Suezaki Y; Otsuka N; Hayashinaka E; Wada Y; Cui Y; Maeda K; Kusuhara H; Sugiyama Y; Hosoya T; Watanabe Y
    Mol Pharm; 2020 Jun; 17(6):1884-1898. PubMed ID: 32271581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of ABCB1 and ABCG2 at the Mouse Blood-Brain Barrier with Marketed Drugs To Improve Brain Delivery of the Model ABCB1/ABCG2 Substrate [
    Traxl A; Mairinger S; Filip T; Sauberer M; Stanek J; Poschner S; Jäger W; Zoufal V; Novarino G; Tournier N; Bauer M; Wanek T; Langer O
    Mol Pharm; 2019 Mar; 16(3):1282-1293. PubMed ID: 30694684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the Contribution of OATP1B1 to Hepatic Uptake of Statins Using the OATP1B1 Selective Inhibitor Estropipate.
    Zhang Y; Panfen E; Fancher M; Sinz M; Marathe P; Shen H
    Mol Pharm; 2019 Jun; 16(6):2342-2353. PubMed ID: 31039308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.