BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31102572)

  • 1. A comprehensive map of human elastin cross-linking during elastogenesis.
    Hedtke T; Schräder CU; Heinz A; Hoehenwarter W; Brinckmann J; Groth T; Schmelzer CEH
    FEBS J; 2019 Sep; 286(18):3594-3610. PubMed ID: 31102572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastin is heterogeneously cross-linked.
    Schräder CU; Heinz A; Majovsky P; Karaman Mayack B; Brinckmann J; Sippl W; Schmelzer CEH
    J Biol Chem; 2018 Sep; 293(39):15107-15119. PubMed ID: 30108173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique molecular networks: Formation and role of elastin cross-links.
    Schmelzer CEH; Hedtke T; Heinz A
    IUBMB Life; 2020 May; 72(5):842-854. PubMed ID: 31834666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model two-component system for studying the architecture of elastin assembly in vitro.
    Mithieux SM; Wise SG; Raftery MJ; Starcher B; Weiss AS
    J Struct Biol; 2005 Mar; 149(3):282-9. PubMed ID: 15721582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fingerprinting desmosine-containing elastin peptides.
    Schräder CU; Heinz A; Majovsky P; Schmelzer CE
    J Am Soc Mass Spectrom; 2015 May; 26(5):762-73. PubMed ID: 25604393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an elastin cross-linking domain that joins three peptide chains. Possible role in nucleated assembly.
    Brown-Augsburger P; Tisdale C; Broekelmann T; Sloan C; Mecham RP
    J Biol Chem; 1995 Jul; 270(30):17778-83. PubMed ID: 7629078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational transitions of the cross-linking domains of elastin during self-assembly.
    Reichheld SE; Muiznieks LD; Stahl R; Simonetti K; Sharpe S; Keeley FW
    J Biol Chem; 2014 Apr; 289(14):10057-68. PubMed ID: 24550393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropoelastin.
    Wise SG; Weiss AS
    Int J Biochem Cell Biol; 2009 Mar; 41(3):494-7. PubMed ID: 18468477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.
    Heinz A; Ruttkies CK; Jahreis G; Schräder CU; Wichapong K; Sippl W; Keeley FW; Neubert RH; Schmelzer CE
    Biochim Biophys Acta; 2013 Apr; 1830(4):2994-3004. PubMed ID: 23375722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of human leukocyte elastase and porcine pancreatic elastase toward peptide 4-nitroanilides containing model desmosine residues. Evidence that human leukocyte elastase is selective for cross-linked regions of elastin.
    Yasutake A; Powers JC
    Biochemistry; 1981 Jun; 20(13):3675-9. PubMed ID: 6912069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of dermal elastic fibers in the absence of fibulin-5 reveals potential roles for fibulin-5 in elastic fiber assembly.
    Choi J; Bergdahl A; Zheng Q; Starcher B; Yanagisawa H; Davis EC
    Matrix Biol; 2009 May; 28(4):211-20. PubMed ID: 19321153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants of cross-linking and hydrophobic domains for self-assembly of elastin-like polypeptides.
    Miao M; Cirulis JT; Lee S; Keeley FW
    Biochemistry; 2005 Nov; 44(43):14367-75. PubMed ID: 16245953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.
    Halper J; Kjaer M
    Adv Exp Med Biol; 2014; 802():31-47. PubMed ID: 24443019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for the extensibility of elastin.
    Li B; Daggett V
    J Muscle Res Cell Motil; 2002; 23(5-6):561-73. PubMed ID: 12785105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional domains on elastin and microfibril-associated glycoprotein involved in elastic fibre assembly.
    Brown-Augsburger P; Broekelmann T; Rosenbloom J; Mecham RP
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):149-55. PubMed ID: 8761465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative and comparative studies of the vocal fold extracellular matrix. I: Elastic fibers and hyaluronic acid.
    Hahn MS; Kobler JB; Starcher BC; Zeitels SM; Langer R
    Ann Otol Rhinol Laryngol; 2006 Feb; 115(2):156-64. PubMed ID: 16514800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence and domain arrangements influence mechanical properties of elastin-like polymeric elastomers.
    Miao M; Sitarz E; Bellingham CM; Won E; Muiznieks LD; Keeley FW
    Biopolymers; 2013 Jun; 99(6):392-407. PubMed ID: 23529691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and morphology of self-assembly of an elastin-like polypeptide based on the alternating domain arrangement of human tropoelastin.
    Cirulis JT; Keeley FW
    Biochemistry; 2010 Jul; 49(27):5726-33. PubMed ID: 20527981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of polyproline II conformation in human tropoelastin structure.
    Bochicchio B; Pepe A
    Chirality; 2011 Oct; 23(9):694-702. PubMed ID: 22135799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.