These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 31102714)
1. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index. Furxhi I; Murphy F; Mullins M; Poland CA Toxicol Lett; 2019 Sep; 312():157-166. PubMed ID: 31102714 [TBL] [Abstract][Full Text] [Related]
2. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related]
3. Application of Bayesian networks in determining nanoparticle-induced cellular outcomes using transcriptomics. Furxhi I; Murphy F; Poland CA; Sheehan B; Mullins M; Mantecca P Nanotoxicology; 2019 Aug; 13(6):827-848. PubMed ID: 31140895 [TBL] [Abstract][Full Text] [Related]
4. Toxicity prediction of nanoparticles using machine learning approaches. Ahmadi M; Ayyoubzadeh SM; Ghorbani-Bidkorpeh F Toxicology; 2024 Jan; 501():153697. PubMed ID: 38056590 [TBL] [Abstract][Full Text] [Related]
5. Can-Evo-Ens: Classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences. Ali S; Majid A J Biomed Inform; 2015 Apr; 54():256-69. PubMed ID: 25617669 [TBL] [Abstract][Full Text] [Related]
6. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review. Marucci-Wellman HR; Corns HL; Lehto MR Accid Anal Prev; 2017 Jan; 98():359-371. PubMed ID: 27863339 [TBL] [Abstract][Full Text] [Related]
7. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers. Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941 [TBL] [Abstract][Full Text] [Related]
8. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets. McAllister P; Zheng H; Bond R; Moorhead A Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733 [TBL] [Abstract][Full Text] [Related]
9. Large-scale comparison of machine learning algorithms for target prediction of natural products. Liang L; Liu Y; Kang B; Wang R; Sun MY; Wu Q; Meng XF; Lin JP Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36007240 [TBL] [Abstract][Full Text] [Related]
10. A novel method for predicting kidney stone type using ensemble learning. Kazemi Y; Mirroshandel SA Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659 [TBL] [Abstract][Full Text] [Related]
11. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels. Su R; Li Y; Zink D; Loo LH BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S16. PubMed ID: 25521947 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Skin Disease Using Ensemble Data Mining Techniques and Feature Selection Method-a Comparative Study. Verma AK; Pal S; Kumar S Appl Biochem Biotechnol; 2020 Feb; 190(2):341-359. PubMed ID: 31350666 [TBL] [Abstract][Full Text] [Related]
13. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction. Jiménez F; Sánchez G; Juárez JM Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210 [TBL] [Abstract][Full Text] [Related]
14. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related]
15. The Impact of Oversampling with SMOTE on the Performance of 3 Classifiers in Prediction of Type 2 Diabetes. Ramezankhani A; Pournik O; Shahrabi J; Azizi F; Hadaegh F; Khalili D Med Decis Making; 2016 Jan; 36(1):137-44. PubMed ID: 25449060 [TBL] [Abstract][Full Text] [Related]
16. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines. Abuassba AOM; Zhang D; Luo X; Shaheryar A; Ali H Comput Intell Neurosci; 2017; 2017():3405463. PubMed ID: 28546808 [TBL] [Abstract][Full Text] [Related]
17. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298 [TBL] [Abstract][Full Text] [Related]
18. Machine learning study of classifiers trained with biophysiochemical properties of amino acids to predict fibril forming Peptide motifs. Kumaran Nair SS; Subba Reddy NV; Hareesha KS Protein Pept Lett; 2012 Sep; 19(9):917-23. PubMed ID: 22486618 [TBL] [Abstract][Full Text] [Related]
19. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Cronin RM; Fabbri D; Denny JC; Rosenbloom ST; Jackson GP Int J Med Inform; 2017 Sep; 105():110-120. PubMed ID: 28750904 [TBL] [Abstract][Full Text] [Related]